本文整理匯總了Python中ramanTools.RamanSpectrum.plot方法的典型用法代碼示例。如果您正苦於以下問題:Python RamanSpectrum.plot方法的具體用法?Python RamanSpectrum.plot怎麽用?Python RamanSpectrum.plot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ramanTools.RamanSpectrum
的用法示例。
在下文中一共展示了RamanSpectrum.plot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: CdSvsCdSe
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def CdSvsCdSe():
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt')
r = removespikes(r)
r.autobaseline((119,286), order = 0)
r.autobaseline((286,1151), order = 4, join = 'start')
r.autobaseline((1151,1560), order = 3, join = 'start')
r.smooth()
r.plot(label = 'CdSe')
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_07.txt')
c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_08.txt')
r = add_RamanSpectra(r,c)
r = SPIDcorrect633(r)
r = removespikes(r)
r.autobaseline((145,1148), order = 3)
r.autobaseline((1148,1253), order = 1,join='start')
r.autobaseline((1253,2000), order = 3,join='start')
r.autobaseline((2000,3600), order = 3,join='start')
r.values[:] = r.values[:]*5
#r.smooth()
r.plot(label='CdS')
legend(['CdSe','CdS'])
return 0
示例2: figure1
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def figure1():
os.chdir('/home/chris/Documents/DataWeiss/150113')
r = RamanSpectrum('15_CdSeMTP dropcast_1.txt')
s = RamanSpectrum('18_1.txt')
r = smooth(r)
s= smooth(s)
r+=100
s+=100
r.plot()
s.plot()
figure()
r = autobaseline(r,(467,1463),order=3)+200
r.plot()
s = autobaseline(s,(467,1463),order=3)+400
s.plot()
MBT = RamanSpectrum('/home/chris/Documents/DataWeiss/141014/4_methoxythiophenol_1.csv')
MBT-=min(MBT[0:2000])
MBT/=max(MBT[0:2000])/500
MBT.plot()
legend(['Ag/Hexanethiol', 'Ag/Hexanethiol + CdSeMTP', 'CdMTP ref'])
return 0
示例3: May14
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def May14():
clf()
s = RamanSpectrum("/home/chris/Documents/DataWeiss/150514/150514_12.txt")
a = RamanSpectrum("/home/chris/Documents/DataWeiss/150514/150514_13.txt")
b = RamanSpectrum("/home/chris/Documents/DataWeiss/150514/150514_14.txt")
c = add_RamanSpectra(a, b)
# c = add_RamanSpectra(s,c)
d = RamanSpectrum("/home/chris/Documents/DataWeiss/150514/150514_15.txt")
v = RamanSpectrum("/home/chris/Documents/DataWeiss/150514/150514_16.txt")
z = 0.15
e = subtract_RamanSpectra(c, d * z)
# e.smooth()
l = subtract_RamanSpectra(c, v * z)
# l.smooth()
e = RamanSpectrum(e.append(l))
e = autobaseline(e, (180, 277), order=4)
e = autobaseline(e, (277, 1700), order=4, join="start")
# j = subtract_RamanSpectra(c,RamanSpectrum(pandas.Series(f[2],f[1])))
e.plot()
# d.plot()
# v.plot()
# CdMeOTPRef.index = array(CdMeOTPRef.index)-5
(CdMeOTPRef / 120).plot()
(MeOTPRef / 240).plot()
return 0
示例4: Apr15
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Apr15():
def gauss(x,A,G,m,b):return A*exp(-(1090-x)**2/G)+m*x+b
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150415/150415_15.txt')
a = SPIDcorrect(a)
noise = calc_noise(a,(900,1000))
start = argmin(abs(1065-array(a.index)))
end = argmin(abs(1115-array(a.index)))
x = array(a.index[start:end])
y = a.values[start:end]
guess = [10,15,-1,y[0]+1000]
peak = scipy.optimize.curve_fit(gauss, x, y, guess)
print peak[0]
a.plot(color = 'k')
#plot(x,gauss(x,*peak[0]))
#
print 'signal to noise =', sqrt(peak[0][0]/noise)
ylim(27000,37000)
ylabel('Raman Intensity (a.u.)')
xlabel('Raman Shift (cm$^{-1}$)')
ax3 = gcf().add_axes((0.6,0.6,0.25,0.25))
a.plot(color='k', ax = ax3)
ax3.annotate('S/N: '+str(1.66), (1080, 28700), textcoords = 'data', size = 18)
ax3.set_ylim(27500,29300)
ax3.set_xlim(900,1200)
return 0
示例5: Mar31
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Mar31():
subplot(221)
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150331/150331_02.txt')
a = autobaseline(a,(141,1700),order = 4)
a = smooth(a)+50
#b = RamanSpectrum('/home/chris/Documents/DataWeiss/150331/150331_03.txt')
#c =add_RamanSpectra(a,b)
a.plot(color = 'k')
ylim(0,200)
xlim(140,1700)
subplot(222)
a.plot(color = 'k')
xlim(2700,3100)
ylim(50,100)
subplot(223)
(RamanSpectrum('/home/chris/Documents/DataWeiss/140918/9_CdMeOTP.SPE')/10-1800).plot(color = 'b')
CdODPARef.plot(color = 'r')
xlim(100,1700)
ylim(0,5000)
subplot(224)
(RamanSpectrum('/home/chris/Documents/DataWeiss/140918/7_CdMeOTP.SPE')-40000).plot(color='b')
(CdODPARef+10000).plot(color = 'r')
xlim(2700,3100)
示例6: m
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def m():
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150304/2_ light.SPE')
v = smooth(r)
for i in range(5):
v = smooth(v)
v.plot(marker='s')
r.plot()
return 0
示例7: Mar24
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Mar24(): ########### Raman of older red dots. These have polystyrene or toluene on them.
figure()
j = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_22.txt')
k = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_23.txt')
l = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_26.txt')
m = add_RamanSpectra(j,k)
m=add_RamanSpectra(m,l)
m=autobaseline(m,(0,3300),order = 0)
m=smooth(m)
m.plot(label='NativeLigands')
j = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_24.txt')
k = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_25.txt')
l = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_26.txt')
m = add_RamanSpectra(j,k)
m=add_RamanSpectra(m,l)
m=autobaseline(m,(0,3300),order = 0)
m=smooth(m)
m.plot(label='NativeLigands')
j = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_28.txt')
k = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_29.txt')
m = add_RamanSpectra(j,k)
m=autobaseline(m,(0,3300),order = 0)
m=smooth(m)
m.plot(label='NativeLigands')
ref = RamanSpectrum('/home/chris/Documents/DataWeiss/141007/Liquid sample corrected-spectrum of toluene.txt')
ref.plot(label = 'toluene')
legend()
title('Native Ligand')
figure()
j = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_34.txt')
m=smooth(j)
m.plot(label='MeOTP')
j = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_35.txt')
k = RamanSpectrum('/home/chris/Documents/DataWeiss/150324/NativeLigand_Red_36.txt')
m = add_RamanSpectra(j,k)
m=smooth(m)
m.plot(label='MeOTP')
title('MeOTP treated')
return 0
示例8: Jan22
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Jan22():### data from trying out the cryostat
from scipy import optimize
os.chdir('/home/chris/Documents/DataWeiss/150121')
red = RamanSpectrum('17.SPE')
red = normalize(red,(0,1600))
red.plot(label='647 nm')
green = RamanSpectrum('14.SPE')
green=normalize(green,(0,1600))
green.plot(label = '514 nm')
cdRef=normalize(CdMeOTPRef,(0,1600))
cdRef.plot(label = 'CdMeOTP Reference')
mtpref = normalize(MeOTPRef,(0,1600))
mtpref.plot(label = 'MeOTP Reference')
xlim(1050,1150)
legend()
def singlegauss(x, A1, x1, c1):return A1*exp(-(x-x1)**2/(2*c1**2))
def doublegauss(x, A1, x1, c1,A2,x2,c2):return A1*exp(-(x-x1)**2/(2*c1**2)) +A2*exp(-(x-x2)**2/(2*c2**2))
green = autobaseline(green, (1050,1150), order = 0)
print argmin(abs(green.index-1100))
x = array(green.index[620:680])
y = array(green.values[620:680])
print x
r = list(optimize.curve_fit(singlegauss,x,y,[1,1087,20])[0])
figure()
plot(x,y,'s')
plot(x,singlegauss(x,*r),'k')
print r
r = list(optimize.curve_fit(doublegauss,x,y,[1,1080,10,1,1090,10])[0])
plot(x,doublegauss(x,*r),'r')
plot(x,singlegauss(x,r[0],r[1],r[2]),'k.')
plot(x,singlegauss(x,*r[3:6]),'k.')
print r
xlabel('Raman Shift cm$^{-1}$')
ylabel('Intensity a.u.')
return 0
示例9: May21
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def May21():
a = RamanSpectrum("/home/chris/Documents/DataWeiss/150521/150521stoic_dots.CSV")
a[:] -= 0.2
n_guess = [
0.05,
0.05,
0.05,
0.1,
0.05,
0.05,
0.05,
0.05,
0.05,
0.05,
1015,
1048,
1075,
1100,
1159,
1169,
1184,
1204,
1221,
1246,
20,
20,
20,
40,
20,
40,
20,
20,
20,
20,
0,
0.0,
]
a.plot(color="k")
print a.nearest(1100)
print a.nearest(1300)
b = fitspectrum(a, (1000, 1260), "xGaussian", n_guess)
print b.params[0]
plot(b.x, b.y, "r")
print len(b.x)
print len(b.peaks)
# plot(b.x,b.peaks[0])
for p in b.peaks:
plot(b.x, p, "b")
# pass
b = (RamanSpectrum("/home/chris/Documents/DataWeiss/150520/150520_02.txt") - 500) / 10000
b.plot()
return 0
示例10: Feb1
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Feb1(): ##
"""Resonance Raman of CdSe dots with PPA in water. February 1"""
clf()
a473 = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_07.txt')
a633 = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_08.txt')
a633=SPIDcorrect633(a633)
a473.autobaseline((120,700),order = 3)
a633.autobaseline((120,700),order = 3)
a473.plot()
a633.plot()
legend(['473','633'])
return 0
示例11: May18
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def May18():
r = RamanSpectrum("/home/chris/Documents/DataWeiss/150518/150518_03b.txt")
r.autobaseline((100, 763), order=3)
r.autobaseline((763, 836), order=1, join="start")
r.autobaseline((836, 1600), order=3, join="start")
r.plot()
r = RamanSpectrum("/home/chris/Documents/DataWeiss/150518/150518_05b.txt")
r.autobaseline((100, 763), order=3)
r.autobaseline((763, 836), order=1, join="start")
r.autobaseline((836, 1650), order=3, join="start")
r.plot()
return 0
示例12: smooth_phonon
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def smooth_phonon():
import RamanTools2
aa = RamanSpectrum('/home/chris/Documents/DataWeiss/141029/4_RubyRed in PS phonon_1.txt')
aa-=min(aa)
aa/=max(aa)
aa._smooth(aa.values,window = 'flat')
aa.plot(color = 'r')
return aa
示例13: Apr6
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def Apr6():
subplot(221)
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150406/150406_02.txt')
a.plot(color = 'k')
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150406/150406_03.txt')
a.plot(color = 'k')
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150406/150406_04.txt')
a.plot(color = 'k')
ylim(1000,3500)
xlim(100,1700)
subplot(222)
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150406/150406_01.txt')
a.plot(color = 'k')
xlim(2700,3100)
subplot(223)
(RamanSpectrum('/home/chris/Documents/DataWeiss/140918/9_CdMeOTP.SPE')/10-1800).plot(color = 'b')
CdODPARef.plot(color = 'r')
xlim(100,1700)
ylim(0,5000)
subplot(224)
(RamanSpectrum('/home/chris/Documents/DataWeiss/140918/7_CdMeOTP.SPE')-40000).plot(color='b')
(CdODPARef+10000).plot(color = 'r')
xlim(2700,3100)
return 0
示例14: concentrationdependence
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def concentrationdependence(): ### determine best conc of dots to add to silver to get signal/fluorescend.
os.chdir('/home/chris/Documents/DataWeiss/150114')
two_x = RamanSpectrum('1_concentration 2x -highest conc_1.txt')
two_x+=1000
one_x = RamanSpectrum('2_1x conc_1.txt')
one_x+=500
_25x = RamanSpectrum('3_0_25xconc_1.txt')
_25x*=10
_25x-=1000
_0625x = RamanSpectrum('5_0_0625x conc_1.txt')
_0625x*=10
_0625x-=1500
two_x.plot()
one_x.plot()
_25x.plot()
_0625x.plot()
legend(['2x','1x','0.25x*10','0.0625x * 10'])
xlabel('Raman Shift cm$^{-1}$')
ylabel('Intensity a.u.')
return 0
示例15: May16
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import plot [as 別名]
def May16():
c = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_08.txt")
c.values[:] *= 3
c = autobaseline(c, (300, 1700), order=6)
c.smooth()
c.plot(label="Cd-enriched")
a = fitspectrum(
c,
(900, 1150),
"SixGaussian",
[200, 200, 200, 200, 200, 200, 950, 990, 1026, 1064, 1087, 1115, 10, 10, 10, 10, 10, 10, 1, -100],
)
plot(a[1], a[2], linewidth=3, label="Cdenriched fit")
# a = RamanSpectrum('/home/chris/Documents/DataWeiss/150516/150516_08.txt')
# b = RamanSpectrum('/home/chris/Documents/DataWeiss/150516/150516_07.txt')
# c = add_RamanSpectra(a,b)
#
# c = autobaseline(c,(300,1700),order = 4)
# c.smooth()
# c.plot(label='stoichiometric')
#
# CdMeOTPRef.index = array(CdMeOTPRef.index)-5
# (CdMeOTPRef/120).plot()
# (MeOTPRef/240).plot()
a = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_01.txt")
b = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_02.txt")
c = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_03.txt") * 4
d = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_05.txt")
e = RamanSpectrum("/home/chris/Documents/DataWeiss/150516/150516_06.txt")
a = add_RamanSpectra(a, b)
a = add_RamanSpectra(a, c)
a = add_RamanSpectra(a, d)
a = add_RamanSpectra(a, e)
a.values[:] /= 10
a.plot(label="pieces")
# ics('/home/chris/Orca/Successful/CdMeOTP/CdMeOTP.out')
# ics('/home/chris/Orca/CdTP_bridge/CdTP_bridgeDFT.out',color='r')
# a= fitspectrum(a,(900,1150),'SixGaussian', [200,200,200,200,200,200,950,990,1026,1064,1087,1115,10,10,10,10,10,10,1,-100])
# plot(a[1],a[2],linewidth =3,label= 'piecesfit')
return 0