本文整理匯總了Python中ramanTools.RamanSpectrum.autobaseline方法的典型用法代碼示例。如果您正苦於以下問題:Python RamanSpectrum.autobaseline方法的具體用法?Python RamanSpectrum.autobaseline怎麽用?Python RamanSpectrum.autobaseline使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ramanTools.RamanSpectrum
的用法示例。
在下文中一共展示了RamanSpectrum.autobaseline方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Mar26
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Mar26():
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_20.txt')
print type(a)
a.smooth()
a.autobaseline((400,520),order =0)
a.autobaseline((520,1756),order = 4)
a.values[:]*=10
a.plot(label = '633 nm')
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_21.txt')
a = smooth(a)
a = autobaseline(a,(2482,3600),4)
a*=10
a.plot(label = '633 nm')
b = CdODPARef-2597
b.plot(label = 'reference')
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_10.txt')
a = smooth(a)
a-=161
a*=25
a.plot(label = '785 nm')
return 0
示例2: May29b
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def May29b():
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt') ## stoichiometric ODPA capped CdSe
r = removespikes(r)
r.autobaseline((119,286), order = 0)
r.autobaseline((286,1151), order = 4, join = 'start')
r.autobaseline((1151,1489), order = 3, join = 'start')
r.smooth()
r.plot()
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_02.txt') # Cd enriched CdSe
r = removespikes(r)
r.autobaseline((272,1746), order = 2)
#r.autobaseline((1151,1489), order = 3, join = 'start')
r.plot()
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150516/150516_08.txt')
r = removespikes(r)
r.autobaseline((272,1746), order = 2)
r.smooth()
r.plot()
legend(['stoic', 'rich apr8', 'rich may16'])
return 0
示例3: Feb1
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Feb1(): ##
"""Resonance Raman of CdSe dots with PPA in water. February 1"""
clf()
a473 = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_07.txt')
a633 = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_08.txt')
a633=SPIDcorrect633(a633)
a473.autobaseline((120,700),order = 3)
a633.autobaseline((120,700),order = 3)
a473.plot()
a633.plot()
legend(['473','633'])
return 0
示例4: Fig1
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Fig1(show_vib_numbers = True): ### reference spectra of methylbenzenethiol
figure(figsize = (6,6))
MBT = copy(MeOTPRef)
MBT-=min(MBT[0:2000])
MBT/=max(MBT[0:2000])
CdMBT = copy(CdMeOTPRef)
CdMBT.index = array(CdMBT.index)-3
CdMBT-=min(CdMBT[0:2000])
CdMBT/=max(CdMBT[0:2000])
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_15.txt')
a.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
a.smooth(window_len=11,window = 'SG')
a[:]/=3000
MBT.plot(color = 'b',linewidth = 2)
CdMBT.plot(color = 'k',linewidth = 2)
a.plot(color = 'r',linewidth = 2)
xlim(500,1675)
ylim(0,1.5)
ylabel('Intensity (a.u.)')
xlabel('Raman shift (cm$^{-1}$)')
####Assignments
assignmentfontsize = 10
# annotate('Ring bending',(635,0.2), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
annotate('Ring bending',(647,0.38), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
annotate('Ring stretching',(1105,1.05), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='horizontal')
annotate('Ring stretching',(806,1.1), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='horizontal')
annotate('CSH bending ',(914,0.25), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
# annotate('CH bending ',(1190,0.33), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
#annotate('Ring stretching',(1300,0.5), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
# annotate('CH bending',(1382,0.1), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
annotate('CC ring stretching',(1607,0.5), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
legend(['MTP', 'CdMTP$_2$', 'QDs-MTP'])
matplotlib.pyplot.tight_layout()
return 0
示例5: OPAMBTExchange
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def OPAMBTExchange():
figure()
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_02.txt')
b = RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_03.txt')
a[:]*=5
b[:]*=5
subplot(121)
a.plot()
CdMethylTPRef.plot()
legend(['new','old'])
r = fitspectrum(a,(1070,1110),'OneGaussian',[25000,1088,10,0,0])
plot(r.x,r.y, 'k',linewidth = 2)
r = fitspectrum(CdMethylTPRef,(1070,1110),'OneGaussian',[25000,1088,10,0,0])
plot(r.x,r.y,'r' ,linewidth = 2)
subplot(122)
b.plot()
CdMeOTPRef.plot()
legend(['new','old'])
r = fitspectrum(b,(1070,1110),'OneGaussian',[60000,1088,10,0,0])
plot(r.x,r.y,'k',linewidth = 2)
r = fitspectrum(CdMeOTPRef,(1070,1110),'OneGaussian',[6000,1088,10,0,0])
plot(r.x,r.y,'r', linewidth = 2)
figure()
June22()
c= RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_05.txt')
c.autobaseline((200,2000),order= 4)
c[:]+=4000
c.plot()
figure()
d= RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_06.txt')
d.autobaseline((200,2000),order= 4)
d[:]*=10
d.plot()
a.plot()
legend(['exchanged', 'reference'])
return 0
示例6: Apr8Raman
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Apr8Raman():
os.chdir('/home/chris/Documents/DataWeiss/150408')
fig = figure()
a = RamanSpectrum('150408_15.txt')
a.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
a.smooth(window_len=11,window = 'SG')
#a+=800
b = RamanSpectrum('150408_02.txt')
#b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
b.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
b.smooth(window_len=11,window = 'SG')
(normalize(MeOTPRef,(0,10000))*4000+1000).plot(color ='b',linewidth=2)
a.plot(color = 'k',linewidth = 2)
b.plot(color = 'r', linewidth = 2)
ylim(-500,6000)
xlim(200,1675)
legend(['MeOTP ref', 'MeOTP treated','Native ligand only'])
ylabel('Raman Intensity (a.u.)')
xlabel('Raman Shift (cm$^{-1}$)')
figure()
title('Washing')
a = RamanSpectrum('150408_11.txt')
b = RamanSpectrum('150408_02.txt')
a = autobaseline(a, (200,1700),leaveout=(200,300),order=4)
b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
(normalize(ODPARef,(0,10000))*4000+2000).plot(color ='b',linewidth=2, label='ODPA Ref')
a.plot(color = 'r',label='washed 5x')
b.plot(color = 'k',label='washed 4x')
#a= fitspectrum(b,(900,1150),'SixGaussian', [200,200,200,200,200,200,950,990,1026,1064,1087,1115,10,10,10,10,10,10,1,-100])
#plot(a[1],a[2],linewidth =3,label='fit')
legend()
ylabel('Raman Intensity (a.u.)')
xlabel('Raman Shift (cm$^{-1}$)')
return 0
示例7: Apr8Raman_forVictor
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Apr8Raman_forVictor():
os.chdir('/home/chris/Documents/DataWeiss/150408')
fig = figure(figsize=(12,6))
subplot(121)
a = RamanSpectrum('150408_15.txt')
a = autobaseline(a, (200,1700),leaveout=(200,300),order=4)
a+=800
b = RamanSpectrum('150408_02.txt')
b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
(normalize(MeOTPRef,(0,10000))*4000+2000).plot(color ='b',linewidth=2,label = 'thiophenolate reference')
a.plot(color = 'k',linewidth = 2)
b.plot(color = 'r', linewidth = 2)
ylim(-500,10000)
xlim(740,1675)
arrowprops={'width':1,'headwidth':3,'color':'k'}
ylabel('Raman Intensity (a.u.)')
xlabel('Raman Shift (cm$^{-1}$)')
annotate('C-S-H bend', (913,2830),xytext = (913,3300), xycoords = 'data',arrowprops = arrowprops,horizontalalignment='center' )
subplot(122)
e = RamanSpectrum('150408_13.txt')
e.autobaseline((2500,3600),leaveout=(200,300),order=2)
e.autobaseline((2500,2800),leaveout=(200,300), order = 1,join='end')
e+=800
f = RamanSpectrum('150408_03.txt')
f.autobaseline((2500,3600),leaveout=(200,300), order = 2)
f.autobaseline((2500,2800),leaveout=(200,300), order = 1,join='end')
(normalize(MeOTPRef,(0,10000))*4000+2000).plot(color ='b',linewidth=2)
e.plot(color = 'k',linewidth = 2, )
f.plot(color = 'r', linewidth = 2)
annotate('S-H stretch', (2560,3370),xytext = (2600,4500), xycoords = 'data',arrowprops = arrowprops,horizontalalignment='center' )
ylim(-500,10000)
xlim(2500,3200)
legend(['thiophenol reference','CdSe thiophenolate-treated','CdSe native ligand only'])
ylabel('Raman Intensity (a.u.)')
xlabel('Raman Shift (cm$^{-1}$)')
# savetxt()
return 0
示例8: calculate_enchancement
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def calculate_enchancement():
global r,s
#### Calc SERS enhancement on
os.chdir('/home/chris/Documents/DataWeiss/150109')
r = RamanSpectrum('1_MeTOP roughened Ag_1.txt')
s = RamanSpectrum('2_MeOTP smooth silver_1.txt')
r.autobaseline((500,1750),order=0)
s.autobaseline((500,1750),order=0)
on_roughened = calc_area(r,(1050,1130))*100 #### multiply, because used filter 0.01
on_smooth = calc_area(s,(1050,1130))
print 'hormalized area on roughened substrate =', on_roughened
print 'hormalized area on roughened substrate =', on_smooth
r.plot(color = 'r')
s.plot(color = 'k')
legend(['roughened', 'smooth (x100)'],loc=2)
annotate('x100', (0.6,0.7), xycoords = 'axes fraction', size = 24,color = 'k')
print 'Approximate surface enhancement =',on_roughened/on_smooth
xlabel('Raman Shift cm$^{-1}$')
ylabel('Intensity a.u.')
return 0
示例9: Feb10
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Feb10():
figure()
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150210/43_ long scan.SPE')
adding = pandas.Series([NaN]*len(arange(300,1500,0.5)),arange(300,1500,0.5))
d=a.append(adding)
d = d.interpolate(method='index')
d = d[arange(300,1500,0.5)]
e = FourierFilter(d,width = 1100)
e.plot()
b = RamanSpectrum('/home/chris/Documents/DataWeiss/150210/44.SPE')
c=b+a
a.autobaseline((300,1600),order = 4)
#a = smooth(a,window_len=9)
b.autobaseline((300,1600),order = 4)
#b=smooth(b,window_len=9)
#a.plot()
#b.plot()
c= autobaseline(c,(300,1600),order = 4)
c = smooth(c, window_len=9)
#c.plot()
legend(['a','d','e'])
return d
示例10: CdMBTinDMF
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def CdMBTinDMF():
clf()
a = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_01.txt')#### DMFonly
b = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_02.txt')#### 510mg DMF with 200 mgCdMBT
a.autobaseline((523,935,1336,1780),order = 3,specialoption='points')
b.autobaseline((523,935,1336,1780),order = 3,specialoption='points')
a[:]*=4720
a[:]/=6256
c = RamanSpectrum(b-a)
c.plot()
r = fitspectrum(c,(1070,1105),'xVoigt',[10000,1088,15,6,0,0])
plot(r.x,r.y,'s-',linewidth=2)
for i in r.peaks:
plot(r.x,i)
print r.areas
print r.params[0][2:4]
CdMethylTPRef.plot()
# def difference(c): return sum((b[200:1700]-c*a[200:1700])**2)
# r = minimize(difference,[1])
return r.params
示例11: Dec15
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def Dec15():
"""PPAcapped CdS in water Raman"""
cla()
ODPARef.plot()
OPARef.plot()
ax = subplot(111)
a = RamanSpectrum('151215/151215_04.txt')#,name='DMF 65 mM')
a.autobaseline((295,350,473,580,755,988,1188,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')
a.plot()
b=RamanSpectrum('151215/151215_02.txt')#,name='7uM PPAcapped dots in water/DMF')
b[:]/=3
b.autobaseline((295,350,473,580,755,961,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')
b.plot()
c=RamanSpectrum('151215/151215_05.txt')#,name = 'PPA')
c.autobaseline((295,350,473,580,755,961,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')
c.plot()
quickoffset(ax,rnge=(200,1600))
return 0
示例12: CdSvsCdSe
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def CdSvsCdSe():
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt')
r = removespikes(r)
r.autobaseline((119,286), order = 0)
r.autobaseline((286,1151), order = 4, join = 'start')
r.autobaseline((1151,1560), order = 3, join = 'start')
r.smooth()
r.plot(label = 'CdSe')
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_07.txt')
c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_08.txt')
r = add_RamanSpectra(r,c)
r = SPIDcorrect633(r)
r = removespikes(r)
r.autobaseline((145,1148), order = 3)
r.autobaseline((1148,1253), order = 1,join='start')
r.autobaseline((1253,2000), order = 3,join='start')
r.autobaseline((2000,3600), order = 3,join='start')
r.values[:] = r.values[:]*5
#r.smooth()
r.plot(label='CdS')
legend(['CdSe','CdS'])
return 0
示例13: June1
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def June1():
clf()
subplot(122)
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_07.txt')
c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_08.txt')
r = add_RamanSpectra(r,c)
r = SPIDcorrect633(r)
r = removespikes(r)
r.autobaseline((145,1148), order = 3)
r.autobaseline((1148,1253), order = 1,join='start')
r.autobaseline((1253,2000), order = 3,join='start')
r.autobaseline((2000,3600), order = 3,join='start')
r.values[:] = r.values[:]*5
#r.smooth()
r.plot()
r= RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_09.txt')
c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_10.txt')
r = add_RamanSpectra(r,c)
r = SPIDcorrect633(r)
#r = removespikes(r)
r.autobaseline((145,1148), order = 2)
r.autobaseline((1148,1253), order = 1,join='start')
r.autobaseline((1253,1700), order = 3,join='start')
r.autobaseline((1700,3600), order = 3,join='start')
r.values[:] = r.values[:]*5
#r.smooth()
r.plot()
legend(['oleate', 'exchanged'])
subplot(121)
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150529/150529_05.txt')
r.autobaseline((147,2000), order =3)
r.autobaseline((147,356), order = 1)
r.autobaseline((356,389), order = 1, join = 'start')
r.autobaseline((389,892), order = 1, join = 'start')
r.autobaseline((892,923), order = 1, join = 'start')
r.autobaseline((923,1185), order = 1, join = 'start')
r.autobaseline((1185,1211), order = 1, join = 'start')
r.autobaseline((1211,1679), order = 2, join = 'start')
r.autobaseline((1679,1702), order = 2, join = 'start')
r.autobaseline((1702,1900), order = 3, join = 'start')
r.smooth()
r.plot()
r = RamanSpectrum('/home/chris/Documents/DataWeiss/150527/150527_06.txt')
r = SPIDcorrect633(r)
r.autobaseline((98,765), order = 4)
r.autobaseline((765,839), order = 2, join = 'start')
r.autobaseline((839,1456), order = 4, join = 'start')
r.autobaseline((1456,1470), order = 2, join = 'start')
r.autobaseline((1470,1900), order = 4, join = 'start')
r.smooth()
r.plot()
legend(['exchanged', 'oleate'])
return 0
示例14: SH
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def SH():
os.chdir('/home/chris/Documents/DataWeiss/150728')
cdmbt=copy.deepcopy(CdMethylTPRef)
mbt=copy.deepcopy(MethylTPRef)
cdmbt.autobaseline((193,4000),order = 0)
mbt.autobaseline((193,4000),order = 0)
mbt[:]/=95
cdmbt[:]/=5
cdmbt.to_csv('/home/chris/Dropbox/Ken/CdMBT2.csv')
fig1 = figure(figsize=(6, 12))
A = RamanSpectrum('filesA.txt') ##450 eq
B = RamanSpectrum('filesB.txt') #200 eq MBT
C = RamanSpectrum('filesC.txt') #100 eq MBT
D = RamanSpectrum('filesD.txt') # 80 eq MBT
E = RamanSpectrum('filesE.txt') # 50 eq MBT
F = RamanSpectrum('filesF.txt') #25 eq MBT
G = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_03.txt')
G.autobaseline((2500,2700,3100,3200),order = 2, specialoption='points')
for z in [A,B,C,D,E,F]:
#z = SPIDcorrect633(z)
z.autobaseline((200,361),order = 1,join='start')
z.autobaseline((361,394),order = 2,join='start')
z.autobaseline((394,647),order = 2,join='start')
z.autobaseline((647,682),order = 0,join='start')
z.autobaseline((682,923),order = 0,join='start')
z.autobaseline((923,955),order = 0,join='start')
z.autobaseline((955,1187),order = 0,join='start')
z.autobaseline((1187,1214),order = 0,join='start')
z.autobaseline((1214,1437),order = 0,join='start')
z.autobaseline((1437,1462),order = 0,join='start')
z.autobaseline((1462,1675),order = 2,join='start')
z.autobaseline((1675,1701),order = 0,join='start')
z.autobaseline((1701,1900), order =2,join='start')
z.autobaseline((1900,2400), order =5,join='start')
z.autobaseline((2400,3200),order = 0,join='start')
z.autobaseline((3200,3600),order = 0,join='start')
# z.autobaseline((981,1013,1098,1141,1251,1491),order =3,specialoption='points', join='start')
z[:]/=50
z.smooth()
z-=z[2402]
for z in [G]:
z.autobaseline((2400,3200),order = 0)
z[:]/=50
z.smooth()
z-=z[2402]
mbt[:]+=700
mbt.set_name('mmmmmm')
A[:]*=2
A[:]+=600
B[:]+=500
C[:]+=400
D[:]+=300
E[:]+=200
F[:]+=100
G[:]*=10
for z in [mbt,A,B,C,D,E,F,G]:
z.to_csv('/home/chris/Dropbox/Ken/SHregion/'+z.name[-5]+'.csv')
mbt.plot()
A.plot()
B.plot()
C.plot()
D.plot()
E.plot()
F.plot()
G.plot()
fs = 14
anx = 2605
annotate('solid MBT',(anx,740), fontsize=fs)
annotate('450 eq MBT',(anx,620), fontsize=fs)
annotate('200 eq MBT',(anx,520), fontsize=fs)
annotate('100 eq MBT',(anx,420), fontsize=fs)
annotate('80 eq MBT',(anx,320), fontsize=fs)
annotate('50 eq MBT',(anx,220), fontsize=fs)
annotate('25 eq MBT',(anx,120), fontsize=fs)
annotate('0 eq',(anx,10), fontsize=fs)
#.........這裏部分代碼省略.........
示例15: SH
# 需要導入模塊: from ramanTools import RamanSpectrum [as 別名]
# 或者: from ramanTools.RamanSpectrum import autobaseline [as 別名]
def SH():
os.chdir('/home/chris/Documents/DataWeiss/150728')
cdmbt=copy.copy(CdMethylTPRef)
mbt=copy.copy(MethylTPRef)
cdmbt.autobaseline((1000,1200),order = 0)
mbt.autobaseline((1000,1200),order = 0)
mbt[:]/=95
cdmbt[:]/=5
cdmbt.to_csv('/home/chris/Dropbox/Ken/CdMBT2.csv')
fig1 = figure(figsize=(6, 12))
A = RamanSpectrum('filesA.txt') ##450 eq
B = RamanSpectrum('filesB.txt') #200 eq MBT
C = RamanSpectrum('filesC.txt') #100 eq MBT
D = RamanSpectrum('filesD.txt') # 80 eq MBT
E = RamanSpectrum('filesE.txt') # 50 eq MBT
F = RamanSpectrum('filesF.txt') #25 eq MBT
G = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_03.txt')
G.autobaseline((2500,2700,3100,3200),order = 2, specialoption='points')
for z in [A,B,C,D,E,F,G]:
z.autobaseline((2400,3200),order = 0)
z[:]/=50
z.smooth()
z-=z[2402]
mbt[:]+=700
mbt.set_name('mmmmmm')
A[:]*=2
A[:]+=600
B[:]+=500
C[:]+=400
D[:]+=300
E[:]+=200
F[:]+=100
G[:]*=10
for z in [mbt,A,B,C,D,E,F,G]:
#z.to_csv('/home/chris/Dropbox/Ken/SHregion/'+z.name[-5]+'.csv')
pass
mbt.plot()
A.plot()
B.plot()
C.plot()
D.plot()
E.plot()
F.plot()
G.plot()
fs = 14
anx = 2605
annotate('solid MBT',(anx,740), fontsize=fs)
annotate('450 eq MBT',(anx,620), fontsize=fs)
annotate('200 eq MBT',(anx,520), fontsize=fs)
annotate('100 eq MBT',(anx,420), fontsize=fs)
annotate('80 eq MBT',(anx,320), fontsize=fs)
annotate('50 eq MBT',(anx,220), fontsize=fs)
annotate('25 eq MBT',(anx,120), fontsize=fs)
annotate('0 eq',(anx,10), fontsize=fs)
xlim(2500,3030)
ylim(-20,1300)
return 0