當前位置: 首頁>>代碼示例>>Python>>正文


Python Result.states方法代碼示例

本文整理匯總了Python中qutip.solver.Result.states方法的典型用法代碼示例。如果您正苦於以下問題:Python Result.states方法的具體用法?Python Result.states怎麽用?Python Result.states使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在qutip.solver.Result的用法示例。


在下文中一共展示了Result.states方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _smepdpsolve_generic

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _smepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See smepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "smepdpsolve"
    data.times = sso.times
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian(sso.H, sso.c_ops)

    progress_bar.start(sso.ntraj)

    for n in range(sso.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(sso.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, sso.times,
                                           N_store, N_substeps,
                                           rho_t, sso.rho0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / sso.ntraj

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    return data
開發者ID:sahmed95,項目名稱:qutip,代碼行數:58,代碼來源:pdpsolve.py

示例2: solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
 def solve(self, rho0, tlist, options=None):
     """
     Solve the ODE for the evolution of diagonal states and Hamiltonians.
     """
     if options is None:
         options = Options()
     output = Result()
     output.solver = "pisolve"
     output.times = tlist
     output.states = []
     output.states.append(Qobj(rho0))
     rhs_generate = lambda y, tt, M: M.dot(y)
     rho0_flat = np.diag(np.real(rho0.full()))
     L = self.coefficient_matrix()
     rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,))
     for r in rho_t[1:]:
         diag = np.diag(r)
         output.states.append(Qobj(diag))
     return output
開發者ID:jenshnielsen,項目名稱:qutip,代碼行數:21,代碼來源:piqs.py

示例3: fsesolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
    """
    Solve the Schrodinger equation using the Floquet formalism.

    Parameters
    ----------

    H : :class:`qutip.qobj.Qobj`
        System Hamiltonian, time-dependent with period `T`.

    psi0 : :class:`qutip.qobj`
        Initial state vector (ket).

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        list of operators for which to evaluate expectation values. If this
        list is empty, the state vectors for each time in `tlist` will be
        returned instead of expectation values.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    Tsteps : integer
        The number of time steps in one driving period for which to
        precalculate the Floquet modes. `Tsteps` should be an even number.

    Returns
    -------

    output : :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which
        contains either an *array* of expectation values or an array of
        state vectors, for the times specified by `tlist`.
    """

    if not T:
        # assume that tlist span exactly one period of the driving
        T = tlist[-1]

    # find the floquet modes for the time-dependent hamiltonian
    f_modes_0, f_energies = floquet_modes(H, T, args)

    # calculate the wavefunctions using the from the floquet modes
    f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                          np.linspace(0, T, Tsteps + 1),
                                          H, T, args)

    # setup Result for storing the results
    output = Result()
    output.times = tlist
    output.solver = "fsesolve"

    if isinstance(e_ops, FunctionType):
        output.num_expect = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        output.num_expect = len(e_ops)
        expt_callback = False

        if output.num_expect == 0:
            output.states = []
        else:
            output.expect = []
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(len(tlist)))
                else:
                    output.expect.append(np.zeros(len(tlist), dtype=complex))

    else:
        raise TypeError("e_ops must be a list Qobj or a callback function")

    psi0_fb = psi0.transform(f_modes_0)
    for t_idx, t in enumerate(tlist):
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        f_states_t = floquet_states(f_modes_t, f_energies, t)
        psi_t = psi0_fb.transform(f_states_t, True)

        if expt_callback:
            # use callback method
            e_ops(t, psi_t)
        else:
            # calculate all the expectation values, or output psi if
            # no expectation value operators where defined
            if output.num_expect == 0:
                output.states.append(Qobj(psi_t))
            else:
                for e_idx, e in enumerate(e_ops):
                    output.expect[e_idx][t_idx] = expect(e, psi_t)

    return output
開發者ID:Marata459,項目名稱:qutip,代碼行數:101,代碼來源:floquet.py

示例4: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
開發者ID:wa4557,項目名稱:qutip,代碼行數:94,代碼來源:mesolve.py

示例5: brmesolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[],
              args={}, options=Options()):
    """
    Solve the dynamics for a system using the Bloch-Redfield master equation.

    .. note::

        This solver does not currently support time-dependent Hamiltonians.

    Parameters
    ----------

    H : :class:`qutip.Qobj`
        System Hamiltonian.

    rho0 / psi0: :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    tlist : *list* / *array*
        List of times for :math:`t`.

    a_ops : list of :class:`qutip.qobj`
        List of system operators that couple to bath degrees of freedom.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    c_ops : list of :class:`qutip.qobj`
        List of system collapse operators.

    args : *dictionary*
        Placeholder for future implementation, kept for API consistency.

    options : :class:`qutip.solver.Options`
        Options for the solver.

    Returns
    -------

    result: :class:`qutip.solver.Result`

        An instance of the class :class:`qutip.solver.Result`, which contains
        either an array of expectation values, for operators given in e_ops,
        or a list of states for the times specified by `tlist`.
    """

    if not spectra_cb:
        # default to infinite temperature white noise
        spectra_cb = [lambda w: 1.0 for _ in a_ops]

    R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)

    if e_ops:
        output.expect = results
    else:
        output.states = results

    return output
開發者ID:JonathanUlm,項目名稱:qutip,代碼行數:66,代碼來源:bloch_redfield.py

示例6: mcsolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]

#.........這裏部分代碼省略.........
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0
開發者ID:mil52603,項目名稱:qutip,代碼行數:70,代碼來源:mcsolve.py

示例7: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
開發者ID:anubhavvardhan,項目名稱:qutip,代碼行數:95,代碼來源:mesolve.py

示例8: _ssepdpsolve_generic

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _ssepdpsolve_generic(sso, options, progress_bar):
    """
    For internal use. See ssepdpsolve.
    """
    if debug:
        logger.debug(inspect.stack()[0][3])

    N_store = len(sso.times)
    N_substeps = sso.nsubsteps
    dt = (sso.times[1] - sso.times[0]) / N_substeps
    nt = sso.ntraj

    data = Result()
    data.solver = "sepdpsolve"
    data.times = sso.tlist
    data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = sso.H
    for c in sso.c_ops:
        Heff += -0.5j * c.dag() * c

    progress_bar.start(sso.ntraj)
    for n in range(sso.ntraj):
        progress_bar.update(n)
        psi_t = sso.state0.full().ravel()

        states_list, jump_times, jump_op_idx = \
            _ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
                                           N_store, N_substeps,
                                           psi_t, sso.state0.dims,
                                           sso.c_ops, sso.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
                       for n in range(len(data.times))]

    # average
    data.expect = data.expect / nt

    # standard error
    if nt > 1:
        data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n, :])
                   if e.isherm else data.expect[n, :]
                   for n, e in enumerate(sso.e_ops)]

    return data
開發者ID:sahmed95,項目名稱:qutip,代碼行數:64,代碼來源:pdpsolve.py

示例9: _gather

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _gather(sols):
    # gather list of Result objects, sols, into one.
    sol = Result()
    # sol = sols[0]
    ntraj = sum([a.ntraj for a in sols])
    sol.col_times = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_which = np.zeros((ntraj), dtype=np.ndarray)
    sol.col_times[0:sols[0].ntraj] = sols[0].col_times
    sol.col_which[0:sols[0].ntraj] = sols[0].col_which
    sol.states = np.array(sols[0].states)
    sol.expect = np.array(sols[0].expect)
    if (hasattr(sols[0], 'entropy')):
        sol.entropy = np.array(sols[0].entropy)
    sofar = 0
    for j in range(1, len(sols)):
        sofar = sofar + sols[j - 1].ntraj
        sol.col_times[sofar:sofar + sols[j].ntraj] = (
            sols[j].col_times)
        sol.col_which[sofar:sofar + sols[j].ntraj] = (
            sols[j].col_which)
        if (config.e_num == 0):
            if (config.options.average_states):
                # collect states, averaged over trajectories
                sol.states += np.array(sols[j].states)
            else:
                # collect states, all trajectories
                sol.states = np.vstack((sol.states,
                                        np.array(sols[j].states)))
        else:
            if (config.options.average_expect):
                # collect expectation values, averaged
                for i in range(config.e_num):
                    sol.expect[i] += np.array(sols[j].expect[i])
            else:
                # collect expectation values, all trajectories
                sol.expect = np.vstack((sol.expect,
                                        np.array(sols[j].expect)))
        if (hasattr(sols[j], 'entropy')):
            if (config.options.average_states or
                    config.options.average_expect):
                # collect entropy values, averaged
                sol.entropy += np.array(sols[j].entropy)
            else:
                # collect entropy values, all trajectories
                sol.entropy = np.vstack((sol.entropy,
                                         np.array(sols[j].entropy)))
    if (config.options.average_states or config.options.average_expect):
        if (config.e_num == 0):
            sol.states = sol.states / len(sols)
        else:
            sol.expect = list(sol.expect / len(sols))
            inds = np.where(config.e_ops_isherm)[0]
            for jj in inds:
                sol.expect[jj] = np.real(sol.expect[jj])
        if (hasattr(sols[0], 'entropy')):
            sol.entropy = sol.entropy / len(sols)

    # convert sol.expect array to list and fix dtypes of arrays
    if (not config.options.average_expect) and config.e_num != 0:
        temp = [list(sol.expect[ii]) for ii in range(ntraj)]
        for ii in range(ntraj):
            for jj in np.where(config.e_ops_isherm)[0]:
                temp[ii][jj] = np.real(temp[ii][jj])
        sol.expect = temp
    # convert to list/array to be consistent with qutip mcsolve
    sol.states = list(sol.states)
    return sol
開發者ID:Marata459,項目名稱:qutip,代碼行數:69,代碼來源:mcsolve_f90.py

示例10: run

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
    def run(self, rho0, tlist):
        """
        Function to solve for an open quantum system using the
        HEOM model.

        Parameters
        ----------
        rho0 : Qobj
            Initial state (density matrix) of the system.

        tlist : list
            Time over which system evolves.

        Returns
        -------
        results : :class:`qutip.solver.Result`
            Object storing all results from the simulation.
        """

        start_run = timeit.default_timer()

        sup_dim = self._sup_dim
        stats = self.stats
        r = self._ode

        if not self._configured:
            raise RuntimeError("Solver must be configured before it is run")
        if stats:
            ss_conf = stats.sections.get('config')
            if ss_conf is None:
                raise RuntimeError("No config section for solver stats")
            ss_run = stats.sections.get('run')
            if ss_run is None:
                ss_run = stats.add_section('run')

        # Set up terms of the matsubara and tanimura boundaries
        output = Result()
        output.solver = "hsolve"
        output.times = tlist
        output.states = []

        if stats: start_init = timeit.default_timer()
        output.states.append(Qobj(rho0))
        rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes
        rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex)
        rho0_he[:sup_dim] = rho0_flat
        r.set_initial_value(rho0_he, tlist[0])

        if stats:
            stats.add_timing('initialize',
                             timeit.default_timer() - start_init, ss_run)
            start_integ = timeit.default_timer()

        dt = np.diff(tlist)
        n_tsteps = len(tlist)
        for t_idx, t in enumerate(tlist):
            if t_idx < n_tsteps - 1:
                r.integrate(r.t + dt[t_idx])
                rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
                output.states.append(rho)

        if stats:
            time_now = timeit.default_timer()
            stats.add_timing('integrate',
                             time_now - start_integ, ss_run)
            if ss_run.total_time is None:
                ss_run.total_time = time_now - start_run
            else:
                ss_run.total_time += time_now - start_run
            stats.total_time = ss_conf.total_time + ss_run.total_time

        return output
開發者ID:MichalKononenko,項目名稱:qutip,代碼行數:74,代碼來源:heom.py

示例11: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        oper_evo = True
        oper_n = dims[0][0]
        norm_dim_factor = np.sqrt(oper_n)
    else:
        oper_evo = False
        norm_dim_factor = 1.0

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    def get_curr_state_data():
        if oper_evo:
            return vec2mat(r.y)
        else:
            return r.y

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        # get the current state / oper data if needed
        cdata = None
        if opt.store_states or opt.normalize_output or n_expt_op > 0:
            cdata = get_curr_state_data()

        if opt.normalize_output:
            # cdata *= _get_norm_factor(cdata, oper_evo)
            cdata *= norm_dim_factor / la_norm(cdata)
            if oper_evo:
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                r.set_initial_value(cdata, r.t)

        if opt.store_states:
            output.states.append(Qobj(cdata, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(cdata, dims=dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    cdata, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
#.........這裏部分代碼省略.........
開發者ID:ajgpitch,項目名稱:qutip,代碼行數:103,代碼來源:sesolve.py

示例12: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar,
                       state_norm_func=None, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    r.y, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y)

    return output
開發者ID:Marata459,項目名稱:qutip,代碼行數:85,代碼來源:sesolve.py

示例13: mcsolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]

#.........這裏部分代碼省略.........
    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options
    if isinstance(ntraj, list):
        config.progress_bar = TextProgressBar(max(ntraj))
    else:
        config.progress_bar = TextProgressBar(ntraj)

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, ndarray)):
        config.ntraj = sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # ----------------------------------------------
    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # ----------------------------------------------
    if (not options.rhs_reuse) or (not config.tdfunc):
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc")
        h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
開發者ID:ntezak,項目名稱:qutip,代碼行數:70,代碼來源:mcsolve.py

示例14: floquet_markov_mesolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None,
                           options=None, floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho.data = vec2mat(r.y)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
#.........這裏部分代碼省略.........
開發者ID:Marata459,項目名稱:qutip,代碼行數:103,代碼來源:floquet.py

示例15: _td_brmesolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]

#.........這裏部分代碼省略.........
                    atol=tol)
        
        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs
        if verbose:
            print('BR compile time:', time.time()-_st)
    initial_vector = mat2vec(rho0.full()).ravel()
    
    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')',
                    '<string>', 'exec')
    _ode.set_integrator('zvode', method=options.method, 
                    order=options.order, atol=options.atol, 
                    rtol=options.rtol, nsteps=options.nsteps,
                    first_step=options.first_step, 
                    min_step=options.min_step,
                    max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())
    
    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar)==BaseProgressBar and verbose:
        _run_time = time.time()
開發者ID:ajgpitch,項目名稱:qutip,代碼行數:70,代碼來源:bloch_redfield.py


注:本文中的qutip.solver.Result.states方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。