本文整理匯總了Python中qutip.solver.Result.states方法的典型用法代碼示例。如果您正苦於以下問題:Python Result.states方法的具體用法?Python Result.states怎麽用?Python Result.states使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類qutip.solver.Result
的用法示例。
在下文中一共展示了Result.states方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _smepdpsolve_generic
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _smepdpsolve_generic(sso, options, progress_bar):
"""
For internal use. See smepdpsolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
N_store = len(sso.times)
N_substeps = sso.nsubsteps
dt = (sso.times[1] - sso.times[0]) / N_substeps
nt = sso.ntraj
data = Result()
data.solver = "smepdpsolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.jump_times = []
data.jump_op_idx = []
# Liouvillian for the deterministic part.
# needs to be modified for TD systems
L = liouvillian(sso.H, sso.c_ops)
progress_bar.start(sso.ntraj)
for n in range(sso.ntraj):
progress_bar.update(n)
rho_t = mat2vec(sso.rho0.full()).ravel()
states_list, jump_times, jump_op_idx = \
_smepdpsolve_single_trajectory(data, L, dt, sso.times,
N_store, N_substeps,
rho_t, sso.rho0.dims,
sso.c_ops, sso.e_ops)
data.states.append(states_list)
data.jump_times.append(jump_times)
data.jump_op_idx.append(jump_op_idx)
progress_bar.finished()
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / sso.ntraj
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
return data
示例2: solve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def solve(self, rho0, tlist, options=None):
"""
Solve the ODE for the evolution of diagonal states and Hamiltonians.
"""
if options is None:
options = Options()
output = Result()
output.solver = "pisolve"
output.times = tlist
output.states = []
output.states.append(Qobj(rho0))
rhs_generate = lambda y, tt, M: M.dot(y)
rho0_flat = np.diag(np.real(rho0.full()))
L = self.coefficient_matrix()
rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,))
for r in rho_t[1:]:
diag = np.diag(r)
output.states.append(Qobj(diag))
return output
示例3: fsesolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def fsesolve(H, psi0, tlist, e_ops=[], T=None, args={}, Tsteps=100):
"""
Solve the Schrodinger equation using the Floquet formalism.
Parameters
----------
H : :class:`qutip.qobj.Qobj`
System Hamiltonian, time-dependent with period `T`.
psi0 : :class:`qutip.qobj`
Initial state vector (ket).
tlist : *list* / *array*
list of times for :math:`t`.
e_ops : list of :class:`qutip.qobj` / callback function
list of operators for which to evaluate expectation values. If this
list is empty, the state vectors for each time in `tlist` will be
returned instead of expectation values.
T : float
The period of the time-dependence of the hamiltonian.
args : dictionary
Dictionary with variables required to evaluate H.
Tsteps : integer
The number of time steps in one driving period for which to
precalculate the Floquet modes. `Tsteps` should be an even number.
Returns
-------
output : :class:`qutip.solver.Result`
An instance of the class :class:`qutip.solver.Result`, which
contains either an *array* of expectation values or an array of
state vectors, for the times specified by `tlist`.
"""
if not T:
# assume that tlist span exactly one period of the driving
T = tlist[-1]
# find the floquet modes for the time-dependent hamiltonian
f_modes_0, f_energies = floquet_modes(H, T, args)
# calculate the wavefunctions using the from the floquet modes
f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
np.linspace(0, T, Tsteps + 1),
H, T, args)
# setup Result for storing the results
output = Result()
output.times = tlist
output.solver = "fsesolve"
if isinstance(e_ops, FunctionType):
output.num_expect = 0
expt_callback = True
elif isinstance(e_ops, list):
output.num_expect = len(e_ops)
expt_callback = False
if output.num_expect == 0:
output.states = []
else:
output.expect = []
for op in e_ops:
if op.isherm:
output.expect.append(np.zeros(len(tlist)))
else:
output.expect.append(np.zeros(len(tlist), dtype=complex))
else:
raise TypeError("e_ops must be a list Qobj or a callback function")
psi0_fb = psi0.transform(f_modes_0)
for t_idx, t in enumerate(tlist):
f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
f_states_t = floquet_states(f_modes_t, f_energies, t)
psi_t = psi0_fb.transform(f_states_t, True)
if expt_callback:
# use callback method
e_ops(t, psi_t)
else:
# calculate all the expectation values, or output psi if
# no expectation value operators where defined
if output.num_expect == 0:
output.states.append(Qobj(psi_t))
else:
for e_idx, e in enumerate(e_ops):
output.expect[e_idx][t_idx] = expect(e, psi_t)
return output
示例4: _generic_ode_solve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
"""
Internal function for solving ME. Solve an ODE which solver parameters
already setup (r). Calculate the required expectation values or invoke
callback function at each time step.
"""
#
# prepare output array
#
n_tsteps = len(tlist)
e_sops_data = []
output = Result()
output.solver = "mesolve"
output.times = tlist
if opt.store_states:
output.states = []
if isinstance(e_ops, types.FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
# fall back on storing states
output.states = []
opt.store_states = True
else:
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
e_sops_data.append(spre(op).data)
if op.isherm and rho0.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
#
# start evolution
#
progress_bar.start(n_tsteps)
rho = Qobj(rho0)
dt = np.diff(tlist)
for t_idx, t in enumerate(tlist):
progress_bar.update(t_idx)
if not r.successful():
break
if opt.store_states or expt_callback:
rho.data = vec2mat(r.y)
if opt.store_states:
output.states.append(Qobj(rho))
if expt_callback:
# use callback method
e_ops(t, rho)
for m in range(n_expt_op):
if output.expect[m].dtype == complex:
output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
else:
output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)
if t_idx < n_tsteps - 1:
r.integrate(r.t + dt[t_idx])
progress_bar.finished()
if not opt.rhs_reuse and config.tdname is not None:
try:
os.remove(config.tdname + ".pyx")
except:
pass
if opt.store_final_state:
rho.data = vec2mat(r.y)
output.final_state = Qobj(rho)
return output
示例5: brmesolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def brmesolve(H, psi0, tlist, a_ops, e_ops=[], spectra_cb=[], c_ops=[],
args={}, options=Options()):
"""
Solve the dynamics for a system using the Bloch-Redfield master equation.
.. note::
This solver does not currently support time-dependent Hamiltonians.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
rho0 / psi0: :class:`qutip.Qobj`
Initial density matrix or state vector (ket).
tlist : *list* / *array*
List of times for :math:`t`.
a_ops : list of :class:`qutip.qobj`
List of system operators that couple to bath degrees of freedom.
e_ops : list of :class:`qutip.qobj` / callback function
List of operators for which to evaluate expectation values.
c_ops : list of :class:`qutip.qobj`
List of system collapse operators.
args : *dictionary*
Placeholder for future implementation, kept for API consistency.
options : :class:`qutip.solver.Options`
Options for the solver.
Returns
-------
result: :class:`qutip.solver.Result`
An instance of the class :class:`qutip.solver.Result`, which contains
either an array of expectation values, for operators given in e_ops,
or a list of states for the times specified by `tlist`.
"""
if not spectra_cb:
# default to infinite temperature white noise
spectra_cb = [lambda w: 1.0 for _ in a_ops]
R, ekets = bloch_redfield_tensor(H, a_ops, spectra_cb, c_ops)
output = Result()
output.solver = "brmesolve"
output.times = tlist
results = bloch_redfield_solve(R, ekets, psi0, tlist, e_ops, options)
if e_ops:
output.expect = results
else:
output.states = results
return output
示例6: mcsolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
#.........這裏部分代碼省略.........
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
config.options = options
if progress_bar:
if progress_bar is True:
config.progress_bar = TextProgressBar()
else:
config.progress_bar = progress_bar
else:
config.progress_bar = BaseProgressBar()
# set num_cpus to the value given in qutip.settings if none in Options
if not config.options.num_cpus:
config.options.num_cpus = qutip.settings.num_cpus
if config.options.num_cpus == 1:
# fallback on serial_map if num_cpu == 1, since there is no
# benefit of starting multiprocessing in this case
config.map_func = serial_map
# set initial value data
if options.tidy:
config.psi0 = psi0.tidyup(options.atol).full().ravel()
else:
config.psi0 = psi0.full().ravel()
config.psi0_dims = psi0.dims
config.psi0_shape = psi0.shape
# set options on ouput states
if config.options.steady_state_average:
config.options.average_states = True
# set general items
config.tlist = tlist
if isinstance(ntraj, (list, np.ndarray)):
config.ntraj = np.sort(ntraj)[-1]
else:
config.ntraj = ntraj
# set norm finding constants
config.norm_tol = options.norm_tol
config.norm_steps = options.norm_steps
# convert array based time-dependence to string format
H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)
# SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
# --------------------------------------------
if not options.rhs_reuse or not config.tdfunc:
# reset config collapse and time-dependence flags to default values
config.soft_reset()
# check for type of time-dependence (if any)
time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
# set time_type for use in multiprocessing
config.tflag = time_type
# check for collapse operators
if c_terms > 0:
config.cflag = 1
else:
config.cflag = 0
示例7: _generic_ode_solve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
"""
Internal function for solving ME. Solve an ODE which solver parameters
already setup (r). Calculate the required expectation values or invoke
callback function at each time step.
"""
#
# prepare output array
#
n_tsteps = len(tlist)
e_sops_data = []
output = Result()
output.solver = "mesolve"
output.times = tlist
if opt.store_states:
output.states = []
if isinstance(e_ops, types.FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
# fall back on storing states
output.states = []
opt.store_states = True
else:
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
e_sops_data.append(spre(op).data)
if op.isherm and rho0.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
#
# start evolution
#
progress_bar.start(n_tsteps)
rho = Qobj(rho0)
dt = np.diff(tlist)
for t_idx, t in enumerate(tlist):
progress_bar.update(t_idx)
if not r.successful():
raise Exception("ODE integration error: Try to increase "
"the allowed number of substeps by increasing "
"the nsteps parameter in the Options class.")
if opt.store_states or expt_callback:
rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
if opt.store_states:
output.states.append(Qobj(rho, isherm=True))
if expt_callback:
# use callback method
e_ops(t, rho)
for m in range(n_expt_op):
if output.expect[m].dtype == complex:
output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
r.y, 0)
else:
output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
r.y, 1)
if t_idx < n_tsteps - 1:
r.integrate(r.t + dt[t_idx])
progress_bar.finished()
if (not opt.rhs_reuse) and (config.tdname is not None):
_cython_build_cleanup(config.tdname)
if opt.store_final_state:
rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)
return output
示例8: _ssepdpsolve_generic
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _ssepdpsolve_generic(sso, options, progress_bar):
"""
For internal use. See ssepdpsolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
N_store = len(sso.times)
N_substeps = sso.nsubsteps
dt = (sso.times[1] - sso.times[0]) / N_substeps
nt = sso.ntraj
data = Result()
data.solver = "sepdpsolve"
data.times = sso.tlist
data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.jump_times = []
data.jump_op_idx = []
# effective hamiltonian for deterministic part
Heff = sso.H
for c in sso.c_ops:
Heff += -0.5j * c.dag() * c
progress_bar.start(sso.ntraj)
for n in range(sso.ntraj):
progress_bar.update(n)
psi_t = sso.state0.full().ravel()
states_list, jump_times, jump_op_idx = \
_ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
N_store, N_substeps,
psi_t, sso.state0.dims,
sso.c_ops, sso.e_ops)
data.states.append(states_list)
data.jump_times.append(jump_times)
data.jump_op_idx.append(jump_op_idx)
progress_bar.finished()
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
示例9: _gather
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _gather(sols):
# gather list of Result objects, sols, into one.
sol = Result()
# sol = sols[0]
ntraj = sum([a.ntraj for a in sols])
sol.col_times = np.zeros((ntraj), dtype=np.ndarray)
sol.col_which = np.zeros((ntraj), dtype=np.ndarray)
sol.col_times[0:sols[0].ntraj] = sols[0].col_times
sol.col_which[0:sols[0].ntraj] = sols[0].col_which
sol.states = np.array(sols[0].states)
sol.expect = np.array(sols[0].expect)
if (hasattr(sols[0], 'entropy')):
sol.entropy = np.array(sols[0].entropy)
sofar = 0
for j in range(1, len(sols)):
sofar = sofar + sols[j - 1].ntraj
sol.col_times[sofar:sofar + sols[j].ntraj] = (
sols[j].col_times)
sol.col_which[sofar:sofar + sols[j].ntraj] = (
sols[j].col_which)
if (config.e_num == 0):
if (config.options.average_states):
# collect states, averaged over trajectories
sol.states += np.array(sols[j].states)
else:
# collect states, all trajectories
sol.states = np.vstack((sol.states,
np.array(sols[j].states)))
else:
if (config.options.average_expect):
# collect expectation values, averaged
for i in range(config.e_num):
sol.expect[i] += np.array(sols[j].expect[i])
else:
# collect expectation values, all trajectories
sol.expect = np.vstack((sol.expect,
np.array(sols[j].expect)))
if (hasattr(sols[j], 'entropy')):
if (config.options.average_states or
config.options.average_expect):
# collect entropy values, averaged
sol.entropy += np.array(sols[j].entropy)
else:
# collect entropy values, all trajectories
sol.entropy = np.vstack((sol.entropy,
np.array(sols[j].entropy)))
if (config.options.average_states or config.options.average_expect):
if (config.e_num == 0):
sol.states = sol.states / len(sols)
else:
sol.expect = list(sol.expect / len(sols))
inds = np.where(config.e_ops_isherm)[0]
for jj in inds:
sol.expect[jj] = np.real(sol.expect[jj])
if (hasattr(sols[0], 'entropy')):
sol.entropy = sol.entropy / len(sols)
# convert sol.expect array to list and fix dtypes of arrays
if (not config.options.average_expect) and config.e_num != 0:
temp = [list(sol.expect[ii]) for ii in range(ntraj)]
for ii in range(ntraj):
for jj in np.where(config.e_ops_isherm)[0]:
temp[ii][jj] = np.real(temp[ii][jj])
sol.expect = temp
# convert to list/array to be consistent with qutip mcsolve
sol.states = list(sol.states)
return sol
示例10: run
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def run(self, rho0, tlist):
"""
Function to solve for an open quantum system using the
HEOM model.
Parameters
----------
rho0 : Qobj
Initial state (density matrix) of the system.
tlist : list
Time over which system evolves.
Returns
-------
results : :class:`qutip.solver.Result`
Object storing all results from the simulation.
"""
start_run = timeit.default_timer()
sup_dim = self._sup_dim
stats = self.stats
r = self._ode
if not self._configured:
raise RuntimeError("Solver must be configured before it is run")
if stats:
ss_conf = stats.sections.get('config')
if ss_conf is None:
raise RuntimeError("No config section for solver stats")
ss_run = stats.sections.get('run')
if ss_run is None:
ss_run = stats.add_section('run')
# Set up terms of the matsubara and tanimura boundaries
output = Result()
output.solver = "hsolve"
output.times = tlist
output.states = []
if stats: start_init = timeit.default_timer()
output.states.append(Qobj(rho0))
rho0_flat = rho0.full().ravel('F') # Using 'F' effectively transposes
rho0_he = np.zeros([sup_dim*self._N_he], dtype=complex)
rho0_he[:sup_dim] = rho0_flat
r.set_initial_value(rho0_he, tlist[0])
if stats:
stats.add_timing('initialize',
timeit.default_timer() - start_init, ss_run)
start_integ = timeit.default_timer()
dt = np.diff(tlist)
n_tsteps = len(tlist)
for t_idx, t in enumerate(tlist):
if t_idx < n_tsteps - 1:
r.integrate(r.t + dt[t_idx])
rho = Qobj(r.y[:sup_dim].reshape(rho0.shape), dims=rho0.dims)
output.states.append(rho)
if stats:
time_now = timeit.default_timer()
stats.add_timing('integrate',
time_now - start_integ, ss_run)
if ss_run.total_time is None:
ss_run.total_time = time_now - start_run
else:
ss_run.total_time += time_now - start_run
stats.total_time = ss_conf.total_time + ss_run.total_time
return output
示例11: _generic_ode_solve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar, dims=None):
"""
Internal function for solving ODEs.
"""
#
# prepare output array
#
n_tsteps = len(tlist)
output = Result()
output.solver = "sesolve"
output.times = tlist
if psi0.isunitary:
oper_evo = True
oper_n = dims[0][0]
norm_dim_factor = np.sqrt(oper_n)
else:
oper_evo = False
norm_dim_factor = 1.0
if opt.store_states:
output.states = []
if isinstance(e_ops, types.FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
# fallback on storing states
output.states = []
opt.store_states = True
else:
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
if op.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
def get_curr_state_data():
if oper_evo:
return vec2mat(r.y)
else:
return r.y
#
# start evolution
#
progress_bar.start(n_tsteps)
dt = np.diff(tlist)
for t_idx, t in enumerate(tlist):
progress_bar.update(t_idx)
if not r.successful():
raise Exception("ODE integration error: Try to increase "
"the allowed number of substeps by increasing "
"the nsteps parameter in the Options class.")
# get the current state / oper data if needed
cdata = None
if opt.store_states or opt.normalize_output or n_expt_op > 0:
cdata = get_curr_state_data()
if opt.normalize_output:
# cdata *= _get_norm_factor(cdata, oper_evo)
cdata *= norm_dim_factor / la_norm(cdata)
if oper_evo:
r.set_initial_value(cdata.ravel('F'), r.t)
else:
r.set_initial_value(cdata, r.t)
if opt.store_states:
output.states.append(Qobj(cdata, dims=dims))
if expt_callback:
# use callback method
e_ops(t, Qobj(cdata, dims=dims))
for m in range(n_expt_op):
output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
cdata, e_ops[m].isherm)
if t_idx < n_tsteps - 1:
r.integrate(r.t + dt[t_idx])
progress_bar.finished()
if not opt.rhs_reuse and config.tdname is not None:
try:
os.remove(config.tdname + ".pyx")
except:
#.........這裏部分代碼省略.........
示例12: _generic_ode_solve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar,
state_norm_func=None, dims=None):
"""
Internal function for solving ODEs.
"""
#
# prepare output array
#
n_tsteps = len(tlist)
output = Result()
output.solver = "sesolve"
output.times = tlist
if opt.store_states:
output.states = []
if isinstance(e_ops, types.FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
# fallback on storing states
output.states = []
opt.store_states = True
else:
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
if op.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
#
# start evolution
#
progress_bar.start(n_tsteps)
dt = np.diff(tlist)
for t_idx, t in enumerate(tlist):
progress_bar.update(t_idx)
if not r.successful():
break
if state_norm_func:
data = r.y / state_norm_func(r.y)
r.set_initial_value(data, r.t)
if opt.store_states:
output.states.append(Qobj(r.y, dims=dims))
if expt_callback:
# use callback method
e_ops(t, Qobj(r.y, dims=psi0.dims))
for m in range(n_expt_op):
output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
r.y, e_ops[m].isherm)
if t_idx < n_tsteps - 1:
r.integrate(r.t + dt[t_idx])
progress_bar.finished()
if not opt.rhs_reuse and config.tdname is not None:
try:
os.remove(config.tdname + ".pyx")
except:
pass
if opt.store_final_state:
output.final_state = Qobj(r.y)
return output
示例13: mcsolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
#.........這裏部分代碼省略.........
if isinstance(c_ops, Qobj):
c_ops = [c_ops]
if isinstance(e_ops, Qobj):
e_ops = [e_ops]
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
config.options = options
if isinstance(ntraj, list):
config.progress_bar = TextProgressBar(max(ntraj))
else:
config.progress_bar = TextProgressBar(ntraj)
# set num_cpus to the value given in qutip.settings if none in Options
if not config.options.num_cpus:
config.options.num_cpus = qutip.settings.num_cpus
# set initial value data
if options.tidy:
config.psi0 = psi0.tidyup(options.atol).full().ravel()
else:
config.psi0 = psi0.full().ravel()
config.psi0_dims = psi0.dims
config.psi0_shape = psi0.shape
# set options on ouput states
if config.options.steady_state_average:
config.options.average_states = True
# set general items
config.tlist = tlist
if isinstance(ntraj, (list, ndarray)):
config.ntraj = sort(ntraj)[-1]
else:
config.ntraj = ntraj
# set norm finding constants
config.norm_tol = options.norm_tol
config.norm_steps = options.norm_steps
# convert array based time-dependence to string format
H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)
# ----------------------------------------------
# SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
# ----------------------------------------------
if (not options.rhs_reuse) or (not config.tdfunc):
# reset config collapse and time-dependence flags to default values
config.soft_reset()
# check for type of time-dependence (if any)
time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc")
h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2])
c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
# set time_type for use in multiprocessing
config.tflag = time_type
# check for collapse operators
if c_terms > 0:
config.cflag = 1
示例14: floquet_markov_mesolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None,
options=None, floquet_basis=True):
"""
Solve the dynamics for the system using the Floquet-Markov master equation.
"""
if options is None:
opt = Options()
else:
opt = options
if opt.tidy:
R.tidyup()
#
# check initial state
#
if isket(rho0):
# Got a wave function as initial state: convert to density matrix.
rho0 = ket2dm(rho0)
#
# prepare output array
#
n_tsteps = len(tlist)
dt = tlist[1] - tlist[0]
output = Result()
output.solver = "fmmesolve"
output.times = tlist
if isinstance(e_ops, FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
output.states = []
else:
if not f_modes_table:
raise TypeError("The Floquet mode table has to be provided " +
"when requesting expectation values.")
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
if op.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
#
# transform the initial density matrix to the eigenbasis: from
# computational basis to the floquet basis
#
if ekets is not None:
rho0 = rho0.transform(ekets)
#
# setup integrator
#
initial_vector = mat2vec(rho0.full())
r = scipy.integrate.ode(cy_ode_rhs)
r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
r.set_integrator('zvode', method=opt.method, order=opt.order,
atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step)
r.set_initial_value(initial_vector, tlist[0])
#
# start evolution
#
rho = Qobj(rho0)
t_idx = 0
for t in tlist:
if not r.successful():
break
rho.data = vec2mat(r.y)
if expt_callback:
# use callback method
if floquet_basis:
e_ops(t, Qobj(rho))
else:
f_modes_table_t, T = f_modes_table
f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
e_ops(t, Qobj(rho).transform(f_modes_t, True))
else:
# calculate all the expectation values, or output rho if
# no operators
if n_expt_op == 0:
if floquet_basis:
#.........這裏部分代碼省略.........
示例15: _td_brmesolve
# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import states [as 別名]
#.........這裏部分代碼省略.........
atol=tol)
cgen.generate(config.tdname + ".pyx")
code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
'<string>', 'exec')
exec(code, globals())
config.tdfunc = cy_td_ode_rhs
if verbose:
print('BR compile time:', time.time()-_st)
initial_vector = mat2vec(rho0.full()).ravel()
_ode = scipy.integrate.ode(config.tdfunc)
code = compile('_ode.set_f_params(' + parameter_string + ')',
'<string>', 'exec')
_ode.set_integrator('zvode', method=options.method,
order=options.order, atol=options.atol,
rtol=options.rtol, nsteps=options.nsteps,
first_step=options.first_step,
min_step=options.min_step,
max_step=options.max_step)
_ode.set_initial_value(initial_vector, tlist[0])
exec(code, locals())
#
# prepare output array
#
n_tsteps = len(tlist)
e_sops_data = []
output = Result()
output.solver = "brmesolve"
output.times = tlist
if options.store_states:
output.states = []
if isinstance(e_ops, types.FunctionType):
n_expt_op = 0
expt_callback = True
elif isinstance(e_ops, list):
n_expt_op = len(e_ops)
expt_callback = False
if n_expt_op == 0:
# fall back on storing states
output.states = []
options.store_states = True
else:
output.expect = []
output.num_expect = n_expt_op
for op in e_ops:
e_sops_data.append(spre(op).data)
if op.isherm:
output.expect.append(np.zeros(n_tsteps))
else:
output.expect.append(np.zeros(n_tsteps, dtype=complex))
else:
raise TypeError("Expectation parameter must be a list or a function")
#
# start evolution
#
if type(progress_bar)==BaseProgressBar and verbose:
_run_time = time.time()