當前位置: 首頁>>代碼示例>>Python>>正文


Python Result.final_state方法代碼示例

本文整理匯總了Python中qutip.solver.Result.final_state方法的典型用法代碼示例。如果您正苦於以下問題:Python Result.final_state方法的具體用法?Python Result.final_state怎麽用?Python Result.final_state使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在qutip.solver.Result的用法示例。


在下文中一共展示了Result.final_state方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import final_state [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
開發者ID:wa4557,項目名稱:qutip,代碼行數:94,代碼來源:mesolve.py

示例2: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import final_state [as 別名]
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
開發者ID:anubhavvardhan,項目名稱:qutip,代碼行數:95,代碼來源:mesolve.py

示例3: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import final_state [as 別名]

#.........這裏部分代碼省略.........
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        oper_evo = True
        oper_n = dims[0][0]
        norm_dim_factor = np.sqrt(oper_n)
    else:
        oper_evo = False
        norm_dim_factor = 1.0

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    def get_curr_state_data():
        if oper_evo:
            return vec2mat(r.y)
        else:
            return r.y

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        # get the current state / oper data if needed
        cdata = None
        if opt.store_states or opt.normalize_output or n_expt_op > 0:
            cdata = get_curr_state_data()

        if opt.normalize_output:
            # cdata *= _get_norm_factor(cdata, oper_evo)
            cdata *= norm_dim_factor / la_norm(cdata)
            if oper_evo:
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                r.set_initial_value(cdata, r.t)

        if opt.store_states:
            output.states.append(Qobj(cdata, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(cdata, dims=dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    cdata, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        cdata = get_curr_state_data()
        if opt.normalize_output:
            cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output
開發者ID:ajgpitch,項目名稱:qutip,代碼行數:104,代碼來源:sesolve.py

示例4: _td_brmesolve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import final_state [as 別名]

#.........這裏部分代碼省略.........
    _ode.set_integrator('zvode', method=options.method, 
                    order=options.order, atol=options.atol, 
                    rtol=options.rtol, nsteps=options.nsteps,
                    first_step=options.first_step, 
                    min_step=options.min_step,
                    max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())
    
    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar)==BaseProgressBar and verbose:
        _run_time = time.time()
    
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()
    
    if type(progress_bar)==BaseProgressBar and verbose:
        print('BR runtime:', time.time()-_run_time)

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)
    
    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
開發者ID:ajgpitch,項目名稱:qutip,代碼行數:104,代碼來源:bloch_redfield.py

示例5: _generic_ode_solve

# 需要導入模塊: from qutip.solver import Result [as 別名]
# 或者: from qutip.solver.Result import final_state [as 別名]
def _generic_ode_solve(r, psi0, tlist, e_ops, opt, progress_bar,
                       state_norm_func=None, dims=None):
    """
    Internal function for solving ODEs.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fallback on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if state_norm_func:
            data = r.y / state_norm_func(r.y)
            r.set_initial_value(data, r.t)

        if opt.store_states:
            output.states.append(Qobj(r.y, dims=dims))

        if expt_callback:
            # use callback method
            e_ops(t, Qobj(r.y, dims=psi0.dims))

        for m in range(n_expt_op):
            output.expect[m][t_idx] = cy_expect_psi(e_ops[m].data,
                                                    r.y, e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        output.final_state = Qobj(r.y)

    return output
開發者ID:Marata459,項目名稱:qutip,代碼行數:85,代碼來源:sesolve.py


注:本文中的qutip.solver.Result.final_state方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。