當前位置: 首頁>>代碼示例>>Python>>正文


Python Odedata.jump_op_idx方法代碼示例

本文整理匯總了Python中qutip.odedata.Odedata.jump_op_idx方法的典型用法代碼示例。如果您正苦於以下問題:Python Odedata.jump_op_idx方法的具體用法?Python Odedata.jump_op_idx怎麽用?Python Odedata.jump_op_idx使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在qutip.odedata.Odedata的用法示例。


在下文中一共展示了Odedata.jump_op_idx方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: smepdpsolve_generic

# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import jump_op_idx [as 別名]
def smepdpsolve_generic(ssdata, options, progress_bar):
    """
    For internal use.

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "smepdpsolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian_fast(ssdata.H, ssdata.c_ops)
        
    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(ssdata.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, ssdata.tlist,
                                           N_store, N_substeps,
                                           rho_t, ssdata.c_ops, ssdata.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]
    
    # average
    data.expect = data.expect / ssdata.ntraj

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    return data
開發者ID:lmessio,項目名稱:qutip,代碼行數:62,代碼來源:stochastic.py

示例2: sepdpsolve_generic

# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import jump_op_idx [as 別名]
def sepdpsolve_generic(ssdata, options, progress_bar):
    """
    For internal use.

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "spdpsolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = ssdata.H
    for c in ssdata.c_ops:
        Heff += -0.5j * c.dag() * c
        
    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)
        psi_t = ssdata.psi0.full()

        states_list, jump_times, jump_op_idx = \
            _sepdpsolve_single_trajectory(Heff, dt, ssdata.tlist,
                                          N_store, N_substeps,
                                          psi_t, ssdata.c_ops, ssdata.e_ops, 
                                          data)

        # if average -> average...
        data.states.append(states_list)

        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average
    data.expect = data.expect / NT

    # standard error
    if NT > 1:
        data.ss = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))

    return data
開發者ID:markusbaden,項目名稱:qutip,代碼行數:61,代碼來源:stochastic.py

示例3: sepdpsolve_generic

# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import jump_op_idx [as 別名]
def sepdpsolve_generic(ssdata, options, progress_bar):
    """
    For internal use.

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "sepdpsolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # effective hamiltonian for deterministic part
    Heff = ssdata.H
    for c in ssdata.c_ops:
        Heff += -0.5j * c.dag() * c
        
    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)
        psi_t = ssdata.psi0.full().ravel()

        states_list, jump_times, jump_op_idx = \
            _sepdpsolve_single_trajectory(Heff, dt, ssdata.tlist,
                                          N_store, N_substeps,
                                          psi_t, ssdata.c_ops, ssdata.e_ops, 
                                          data)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]

    # average
    data.expect = data.expect / NT

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:]
                   for n, e in enumerate(ssdata.e_ops)]

    return data
開發者ID:silky,項目名稱:qutip,代碼行數:69,代碼來源:stochastic.py


注:本文中的qutip.odedata.Odedata.jump_op_idx方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。