本文整理匯總了Python中qutip.odedata.Odedata.col_times方法的典型用法代碼示例。如果您正苦於以下問題:Python Odedata.col_times方法的具體用法?Python Odedata.col_times怎麽用?Python Odedata.col_times使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類qutip.odedata.Odedata
的用法示例。
在下文中一共展示了Odedata.col_times方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mcsolve_f90
# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import col_times [as 別名]
#.........這裏部分代碼省略.........
ntraj = options.ntraj
if psi0.type != 'ket':
raise Exception("Initial state must be a state vector.")
odeconfig.options = options
# set num_cpus to the value given in qutip.settings
# if none in Odeoptions
if not odeconfig.options.num_cpus:
odeconfig.options.num_cpus = qutip.settings.num_cpus
# set initial value data
if options.tidy:
odeconfig.psi0 = psi0.tidyup(options.atol).full()
else:
odeconfig.psi0 = psi0.full()
odeconfig.psi0_dims = psi0.dims
odeconfig.psi0_shape = psi0.shape
# set general items
odeconfig.tlist = tlist
if isinstance(ntraj, (list, np.ndarray)):
raise Exception("ntraj as list argument is not supported.")
else:
odeconfig.ntraj = ntraj
# ntraj_list = [ntraj]
# set norm finding constants
odeconfig.norm_tol = options.norm_tol
odeconfig.norm_steps = options.norm_steps
if not options.rhs_reuse:
odeconfig.soft_reset()
# no time dependence
odeconfig.tflag = 0
# check for collapse operators
if len(c_ops) > 0:
odeconfig.cflag = 1
else:
odeconfig.cflag = 0
# Configure data
_mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, odeconfig)
# Load Monte Carlo class
mc = _MC_class()
# Set solver type
if (options.method == 'adams'):
mc.mf = 10
elif (options.method == 'bdf'):
mc.mf = 22
else:
if debug:
print('Unrecognized method for ode solver, using "adams".')
mc.mf = 10
# store ket and density matrix dims and shape for convenience
mc.psi0_dims = psi0.dims
mc.psi0_shape = psi0.shape
mc.dm_dims = (psi0 * psi0.dag()).dims
mc.dm_shape = (psi0 * psi0.dag()).shape
# use sparse density matrices during computation?
mc.sparse_dms = sparse_dms
# run in serial?
mc.serial_run = serial or (ntraj == 1)
# are we doing a partial trace for returned states?
mc.ptrace_sel = ptrace_sel
if (ptrace_sel != []):
if debug:
print("ptrace_sel set to " + str(ptrace_sel))
print("We are using dense density matrices during computation " +
"when performing partial trace. Setting sparse_dms = False")
print("This feature is experimental.")
mc.sparse_dms = False
mc.dm_dims = psi0.ptrace(ptrace_sel).dims
mc.dm_shape = psi0.ptrace(ptrace_sel).shape
if (calc_entropy):
if (ptrace_sel == []):
if debug:
print("calc_entropy = True, but ptrace_sel = []. Please set " +
"a list of components to keep when calculating average " +
"entropy of reduced density matrix in ptrace_sel. " +
"Setting calc_entropy = False.")
calc_entropy = False
mc.calc_entropy = calc_entropy
# construct output Odedata object
output = Odedata()
# Run
mc.run()
output.states = mc.sol.states
output.expect = mc.sol.expect
output.col_times = mc.sol.col_times
output.col_which = mc.sol.col_which
if (hasattr(mc.sol, 'entropy')):
output.entropy = mc.sol.entropy
output.solver = 'Fortran 90 Monte Carlo solver'
# simulation parameters
output.times = odeconfig.tlist
output.num_expect = odeconfig.e_num
output.num_collapse = odeconfig.c_num
output.ntraj = odeconfig.ntraj
return output
示例2: evolve_serial
# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import col_times [as 別名]
def evolve_serial(self, args):
if debug:
print(inspect.stack()[0][3] + ":" + str(os.getpid()))
# run ntraj trajectories for one process via fortran
# get args
queue, ntraj, instanceno, rngseed = args
# initialize the problem in fortran
_init_tlist()
_init_psi0()
if (self.ptrace_sel != []):
_init_ptrace_stuff(self.ptrace_sel)
_init_hamilt()
if (odeconfig.c_num != 0):
_init_c_ops()
if (odeconfig.e_num != 0):
_init_e_ops()
# set options
qtf90.qutraj_run.n_c_ops = odeconfig.c_num
qtf90.qutraj_run.n_e_ops = odeconfig.e_num
qtf90.qutraj_run.ntraj = ntraj
qtf90.qutraj_run.unravel_type = self.unravel_type
qtf90.qutraj_run.average_states = odeconfig.options.average_states
qtf90.qutraj_run.average_expect = odeconfig.options.average_expect
qtf90.qutraj_run.init_odedata(odeconfig.psi0_shape[0],
odeconfig.options.atol,
odeconfig.options.rtol, mf=self.mf,
norm_steps=odeconfig.norm_steps,
norm_tol=odeconfig.norm_tol)
# set optional arguments
qtf90.qutraj_run.order = odeconfig.options.order
qtf90.qutraj_run.nsteps = odeconfig.options.nsteps
qtf90.qutraj_run.first_step = odeconfig.options.first_step
qtf90.qutraj_run.min_step = odeconfig.options.min_step
qtf90.qutraj_run.max_step = odeconfig.options.max_step
qtf90.qutraj_run.norm_steps = odeconfig.options.norm_steps
qtf90.qutraj_run.norm_tol = odeconfig.options.norm_tol
# use sparse density matrices during computation?
qtf90.qutraj_run.rho_return_sparse = self.sparse_dms
# calculate entropy of reduced density matrice?
qtf90.qutraj_run.calc_entropy = self.calc_entropy
# run
show_progress = 1 if debug else 0
qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress)
# construct Odedata instance
sol = Odedata()
sol.ntraj = ntraj
# sol.col_times = qtf90.qutraj_run.col_times
# sol.col_which = qtf90.qutraj_run.col_which-1
sol.col_times, sol.col_which = self.get_collapses(ntraj)
if (odeconfig.e_num == 0):
sol.states = self.get_states(len(odeconfig.tlist), ntraj)
else:
sol.expect = self.get_expect(len(odeconfig.tlist), ntraj)
if (self.calc_entropy):
sol.entropy = self.get_entropy(len(odeconfig.tlist))
if (not self.serial_run):
# put to queue
queue.put(sol)
queue.join()
# deallocate stuff
# finalize()
return sol
示例3: _gather
# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import col_times [as 別名]
def _gather(sols):
# gather list of Odedata objects, sols, into one.
sol = Odedata()
# sol = sols[0]
ntraj = sum([a.ntraj for a in sols])
sol.col_times = np.zeros((ntraj), dtype=np.ndarray)
sol.col_which = np.zeros((ntraj), dtype=np.ndarray)
sol.col_times[0:sols[0].ntraj] = sols[0].col_times
sol.col_which[0:sols[0].ntraj] = sols[0].col_which
sol.states = np.array(sols[0].states)
sol.expect = np.array(sols[0].expect)
if (hasattr(sols[0], 'entropy')):
sol.entropy = np.array(sols[0].entropy)
sofar = 0
for j in range(1, len(sols)):
sofar = sofar + sols[j - 1].ntraj
sol.col_times[sofar:sofar + sols[j].ntraj] = (
sols[j].col_times)
sol.col_which[sofar:sofar + sols[j].ntraj] = (
sols[j].col_which)
if (odeconfig.e_num == 0):
if (odeconfig.options.average_states):
# collect states, averaged over trajectories
sol.states += np.array(sols[j].states)
else:
# collect states, all trajectories
sol.states = np.vstack((sol.states,
np.array(sols[j].states)))
else:
if (odeconfig.options.average_expect):
# collect expectation values, averaged
for i in range(odeconfig.e_num):
sol.expect[i] += np.array(sols[j].expect[i])
else:
# collect expectation values, all trajectories
sol.expect = np.vstack((sol.expect,
np.array(sols[j].expect)))
if (hasattr(sols[j], 'entropy')):
if (odeconfig.options.average_states or odeconfig.options.average_expect):
# collect entropy values, averaged
sol.entropy += np.array(sols[j].entropy)
else:
# collect entropy values, all trajectories
sol.entropy = np.vstack((sol.entropy,
np.array(sols[j].entropy)))
if (odeconfig.options.average_states or odeconfig.options.average_expect):
if (odeconfig.e_num == 0):
sol.states = sol.states / len(sols)
else:
sol.expect = list(sol.expect / len(sols))
inds=np.where(odeconfig.e_ops_isherm)[0]
for jj in inds:
sol.expect[jj]=np.real(sol.expect[jj])
if (hasattr(sols[0], 'entropy')):
sol.entropy = sol.entropy / len(sols)
#convert sol.expect array to list and fix dtypes of arrays
if (not odeconfig.options.average_expect) and odeconfig.e_num!=0:
temp=[list(sol.expect[ii]) for ii in range(ntraj)]
for ii in range(ntraj):
for jj in np.where(odeconfig.e_ops_isherm)[0]:
temp[ii][jj]=np.real(temp[ii][jj])
sol.expect=temp
# convert to list/array to be consistent with qutip mcsolve
sol.states = list(sol.states)
return sol
示例4: mcsolve
# 需要導入模塊: from qutip.odedata import Odedata [as 別名]
# 或者: from qutip.odedata.Odedata import col_times [as 別名]
#.........這裏部分代碼省略.........
#check if running in iPython and using Cython compiling (then no GUI to work around error)
if odeconfig.options.gui and odeconfig.tflag in array([1,10,11]):
try:
__IPYTHON__
except:
pass
else:
odeconfig.options.gui=False
if qutip.settings.qutip_gui=="NONE":
odeconfig.options.gui=False
#check for collapse operators
if c_terms>0:
odeconfig.cflag=1
else:
odeconfig.cflag=0
#Configure data
_mc_data_config(H,psi0,h_stuff,c_ops,c_stuff,args,e_ops,options)
if odeconfig.tflag in array([1,10,11]): #compile time-depdendent RHS code
os.environ['CFLAGS'] = '-O3 -w'
import pyximport
pyximport.install(setup_args={'include_dirs':[numpy.get_include()]})
if odeconfig.tflag in array([1,11]):
code = compile('from '+odeconfig.tdname+' import cyq_td_ode_rhs,col_spmv,col_expect', '<string>', 'exec')
exec(code, globals())
odeconfig.tdfunc=cyq_td_ode_rhs
odeconfig.colspmv=col_spmv
odeconfig.colexpect=col_expect
else:
code = compile('from '+odeconfig.tdname+' import cyq_td_ode_rhs', '<string>', 'exec')
exec(code, globals())
odeconfig.tdfunc=cyq_td_ode_rhs
try:
os.remove(odeconfig.tdname+".pyx")
except:
print("Error removing pyx file. File not found.")
elif odeconfig.tflag==0:
odeconfig.tdfunc=cyq_ode_rhs
else:#setup args for new parameters when rhs_reuse=True and tdfunc is given
#string based
if odeconfig.tflag in array([1,10,11]):
if any(args):
odeconfig.c_args=[]
arg_items=args.items()
for k in range(len(args)):
odeconfig.c_args.append(arg_items[k][1])
#function based
elif odeconfig.tflag in array([2,3,20,22]):
odeconfig.h_func_args=args
#load monte-carlo class
mc=_MC_class()
#RUN THE SIMULATION
mc.run()
#AFTER MCSOLVER IS DONE --------------------------------------
#-------COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT --------------#
output=Odedata()
output.solver='mcsolve'
#state vectors
if mc.psi_out is not None and odeconfig.options.mc_avg and odeconfig.cflag:
output.states=parfor(_mc_dm_avg,mc.psi_out.T)
elif mc.psi_out is not None:
output.states=mc.psi_out
#expectation values
elif mc.expect_out is not None and odeconfig.cflag and odeconfig.options.mc_avg:#averaging if multiple trajectories
if isinstance(ntraj,int):
output.expect=mean(mc.expect_out,axis=0)
elif isinstance(ntraj,(list,ndarray)):
output.expect=[]
for num in ntraj:
expt_data=mean(mc.expect_out[:num],axis=0)
data_list=[]
if any([op.isherm==False for op in e_ops]):
for k in range(len(e_ops)):
if e_ops[k].isherm:
data_list.append(real(expt_data[k]))
else:
data_list.append(expt_data[k])
else:
data_list=[data for data in expt_data]
output.expect.append(data_list)
else:#no averaging for single trajectory or if mc_avg flag (Odeoptions) is off
if mc.expect_out is not None:
output.expect=mc.expect_out
#simulation parameters
output.times=odeconfig.tlist
output.num_expect=odeconfig.e_num
output.num_collapse=odeconfig.c_num
output.ntraj=odeconfig.ntraj
output.col_times=mc.collapse_times_out
output.col_which=mc.which_op_out
return output