當前位置: 首頁>>代碼示例>>Python>>正文


Python StringIndexer.getOutputCol方法代碼示例

本文整理匯總了Python中pyspark.ml.feature.StringIndexer.getOutputCol方法的典型用法代碼示例。如果您正苦於以下問題:Python StringIndexer.getOutputCol方法的具體用法?Python StringIndexer.getOutputCol怎麽用?Python StringIndexer.getOutputCol使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.ml.feature.StringIndexer的用法示例。


在下文中一共展示了StringIndexer.getOutputCol方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: StringIndexer

# 需要導入模塊: from pyspark.ml.feature import StringIndexer [as 別名]
# 或者: from pyspark.ml.feature.StringIndexer import getOutputCol [as 別名]
if __name__ == "__main__":
    spark = SparkSession\
        .builder\
        .appName("IndexToStringExample")\
        .getOrCreate()

    # $example on$
    df = spark.createDataFrame(
        [(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
        ["id", "category"])

    indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
    model = indexer.fit(df)
    indexed = model.transform(df)

    print("Transformed string column '%s' to indexed column '%s'"
          % (indexer.getInputCol(), indexer.getOutputCol()))
    indexed.show()

    print("StringIndexer will store labels in output column metadata\n")

    converter = IndexToString(inputCol="categoryIndex", outputCol="originalCategory")
    converted = converter.transform(indexed)

    print("Transformed indexed column '%s' back to original string column '%s' using "
          "labels in metadata" % (converter.getInputCol(), converter.getOutputCol()))
    converted.select("id", "categoryIndex", "originalCategory").show()
    # $example off$

    spark.stop()
開發者ID:lhfei,項目名稱:spark-in-action,代碼行數:32,代碼來源:index_to_string_example.py

示例2: SQLContext

# 需要導入模塊: from pyspark.ml.feature import StringIndexer [as 別名]
# 或者: from pyspark.ml.feature.StringIndexer import getOutputCol [as 別名]
print "Text is cleaned"

sqlContext = SQLContext(sc)
df = sqlContext.createDataFrame(rdd, ["review", "label"])
dfTrain, dfTest = df.randomSplit([0.8, 0.2])

print "Random split is done"

tokenizerNoSw = tr.NLTKWordPunctTokenizer(
    inputCol="review", outputCol="wordsNoSw", stopwords=set(nltk.corpus.stopwords.words("english"))
)
hashing_tf = HashingTF(inputCol=tokenizerNoSw.getOutputCol(), outputCol="reviews_tf")
idf = IDF(inputCol=hashing_tf.getOutputCol(), outputCol="reviews_tfidf")
string_indexer = StringIndexer(inputCol="label", outputCol="target_indexed")
dt = DecisionTreeClassifier(featuresCol=idf.getOutputCol(), labelCol=string_indexer.getOutputCol(), maxDepth=10)

pipeline = Pipeline(stages=[tokenizerNoSw, hashing_tf, idf, string_indexer, dt])


# ****************************************************************
# *********************CROSS VALIDATION: 80%/20%******************
# *******************Model: DecisionTreeClassifier*****************
# *****************************************************************

evaluator = MulticlassClassificationEvaluator(
    predictionCol="prediction", labelCol="target_indexed", metricName="precision"
)

grid = ParamGridBuilder().baseOn([evaluator.metricName, "precision"]).addGrid(dt.maxDepth, [10, 20]).build()
開發者ID:pifouuu,項目名稱:ProjetBigData,代碼行數:31,代碼來源:script1.py

示例3: StringIndexer

# 需要導入模塊: from pyspark.ml.feature import StringIndexer [as 別名]
# 或者: from pyspark.ml.feature.StringIndexer import getOutputCol [as 別名]
features=dfBigram.map(partial(vectorizeBi,dico=dict_broad.value)).toDF(schema)

print "Features from bigrams created"

from pyspark.ml.feature import StringIndexer
from pyspark.ml.classification import DecisionTreeClassifier

string_indexer = StringIndexer(inputCol='label', outputCol='target_indexed')
string_indexer_model = string_indexer.fit(features)
featIndexed = string_indexer_model.transform(features)

print "labels indexed"


dt = DecisionTreeClassifier(featuresCol='bigramVectors', labelCol=string_indexer.getOutputCol(), maxDepth=10)


from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='target_indexed', metricName='precision')


from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.tuning import CrossValidator
grid=(ParamGridBuilder()
     .baseOn([evaluator.metricName,'precision'])
     .addGrid(dt.maxDepth, [10,20])
     .build())
cv = CrossValidator(estimator=dt, estimatorParamMaps=grid,evaluator=evaluator)

from time import time
開發者ID:pifouuu,項目名稱:ProjetBigData,代碼行數:32,代碼來源:script3.py

示例4: StructType

# 需要導入模塊: from pyspark.ml.feature import StringIndexer [as 別名]
# 或者: from pyspark.ml.feature.StringIndexer import getOutputCol [as 別名]
schema = StructType([StructField('label',DoubleType(),True),StructField('Vectors',VectorUDT(),True)])


features=dfTrainTok.map(partial(vectorize,dico=dict_broad.value)).toDF(schema)

print "Features created"

from pyspark.ml.feature import StringIndexer

string_indexer = StringIndexer(inputCol='label', outputCol='target_indexed')
string_indexer_model = string_indexer.fit(features)
featIndexed = string_indexer_model.transform(features)

print "labels indexed"

lr = LogisticRegression(featuresCol='Vectors', labelCol=string_indexer.getOutputCol())

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='target_indexed', metricName='precision')

lr_model = lr.fit(featIndexed)

dfTestTok = tokenizer.transform(dfTest)
featuresTest=dfTestTok.map(partial(vectorize,dico=dict_broad.value)).toDF(schema)
testIndexed = string_indexer_model.transform(featuresTest)

df_test_pred = lr_model.transform(testIndexed)

res=evaluator.evaluate(df_test_pred)

print res
開發者ID:pifouuu,項目名稱:ProjetBigData,代碼行數:33,代碼來源:reglog_nocv_simple.py

示例5: SQLContext

# 需要導入模塊: from pyspark.ml.feature import StringIndexer [as 別名]
# 或者: from pyspark.ml.feature.StringIndexer import getOutputCol [as 別名]
print "Text is cleaned"

sqlContext = SQLContext(sc)
df = sqlContext.createDataFrame(rdd, ['review', 'label'])
dfTrain, dfTest = df.randomSplit([0.8,0.2])

print "Random split is done"

tokenizerNoSw = tr.NLTKWordPunctTokenizer(
    inputCol="review", outputCol="wordsNoSw",  
    stopwords=set(nltk.corpus.stopwords.words('english')))
hashing_tf = HashingTF(inputCol=tokenizerNoSw.getOutputCol(), outputCol='reviews_tf')
idf = IDF(inputCol=hashing_tf.getOutputCol(), outputCol="reviews_tfidf")
string_indexer = StringIndexer(inputCol='label', outputCol='target_indexed')
dt = LogisticRegression(featuresCol=idf.getOutputCol(), labelCol=string_indexer.getOutputCol(),maxIter=30, regParam=0.01)

pipeline = Pipeline(stages=[tokenizerNoSw,
                            hashing_tf,
                            idf,
                            string_indexer,
                            dt])

evaluator = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='target_indexed', metricName='precision')

# grid=(ParamGridBuilder()
#      .baseOn([evaluator.metricName,'precision'])
#      .addGrid(dt.maxDepth, [10,20])
#      .build())

#cv = CrossValidator(estimator=pipeline, estimatorParamMaps=grid,evaluator=evaluator)
開發者ID:pifouuu,項目名稱:ProjetBigData,代碼行數:32,代碼來源:script1_nocv.py


注:本文中的pyspark.ml.feature.StringIndexer.getOutputCol方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。