當前位置: 首頁>>代碼示例>>Python>>正文


Python SQLContext.jsonRDD方法代碼示例

本文整理匯總了Python中pyspark.SQLContext.jsonRDD方法的典型用法代碼示例。如果您正苦於以下問題:Python SQLContext.jsonRDD方法的具體用法?Python SQLContext.jsonRDD怎麽用?Python SQLContext.jsonRDD使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.SQLContext的用法示例。


在下文中一共展示了SQLContext.jsonRDD方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: SparkContext

# 需要導入模塊: from pyspark import SQLContext [as 別名]
# 或者: from pyspark.SQLContext import jsonRDD [as 別名]
    sc = SparkContext(conf=conf)
    sqlContext = SQLContext(sc)

    # 查詢從當前時間開始前10s的數據
    now_datetime = datetime.now()
    end_time = int(time.mktime(now_datetime.timetuple()))
    start_time = int(time.mktime((now_datetime - timedelta(seconds=5)).timetuple()))
    print start_time
    print end_time

    his_data = RedisCache().zrange_by_score("his_data_zadd", start_time, end_time)
    #print his_data['result']

    if his_data['result']:
        hisRDD = sc.parallelize(his_data['result'])
        his = sqlContext.jsonRDD(hisRDD)
        print his.count()


        row = his.sort(his.value.desc()).first()
        print "|Time: " + row[0], "|Name: " + row[1], "|Oid: " + row[2], "|Value: " + str(row[3]) + "|"

        his.registerTempTable("his_data_zadd")
        #sqlContext.cacheTable("his_data_zadd")

        #assets = sqlContext.sql("SELECT his.name, his.oid FROM his_data_zadd as his WHERE his.value > 200 AND his.oid < 3000000")
        #sql_str = "SELECT his.name, his.oid FROM (SELECT MAX(temp_t.value), temp_t.name, temp_t.oid FROM his_data_zadd AS temp_t) his"
        #sql_str = "SELECT his.name, his.oid, his.value FROM his_data_zadd AS his ORDER BY his.value DESC LIMIT 10"
        #sql_str = 'SELECT his.name, his.oid FROM his_data_zadd AS his WHERE EXISTS (SELECT MAX(temp_t.value) FROM his_data_zadd AS temp_t)'
        """
        Spark 1.5 does not support subquery.
開發者ID:imperio-wxm,項目名稱:spark-by-python,代碼行數:33,代碼來源:sql_redis.py

示例2: print_fun

# 需要導入模塊: from pyspark import SQLContext [as 別名]
# 或者: from pyspark.SQLContext import jsonRDD [as 別名]
from pyspark import SparkContext, SparkConf
from pyspark import SQLContext
import itertools

def print_fun(collect):
    for item in itertools.chain(collect):
        print "|Name: " + item[0], "|Value: " + str(item[1]), "|Attribute: " + item[2]

if __name__ == "__main__":
    conf = SparkConf().setAppName("json_ops").setMaster("local[3]")
    sc = SparkContext(conf=conf)

    sqlContext = SQLContext(sc)

    # 將json格式直接直接parallelize為RDD
    equipmentRDD = sc.parallelize(['{"name":"asset1","value":1,"attribute":"屬性1"}',
                                   '{"name":"asset2","value":2,"attribute":"屬性2"}',
                                   '{"name":"asset3","value":3,"attribute":"屬性3"}'])

    equipment = sqlContext.jsonRDD(equipmentRDD)
    equipment.registerTempTable("equipment")

    assets = sqlContext.sql("SELECT * FROM equipment as eq WHERE eq.value >= 1 AND eq.value <= 2")

    assets.show()

    # 查詢結果進行隱射
    assetMap = assets.map(lambda asset: (asset.name, asset.value, asset.attribute)).foreachPartition(print_fun)

    sc.stop()
開發者ID:imperio-wxm,項目名稱:spark-by-python,代碼行數:32,代碼來源:json_ops.py


注:本文中的pyspark.SQLContext.jsonRDD方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。