當前位置: 首頁>>代碼示例>>Python>>正文


Python pyspark.SQLContext類代碼示例

本文整理匯總了Python中pyspark.SQLContext的典型用法代碼示例。如果您正苦於以下問題:Python SQLContext類的具體用法?Python SQLContext怎麽用?Python SQLContext使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了SQLContext類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: hash_rating

def hash_rating(author_subreddit_rating_rdd, sc):
    sql_context = SQLContext(sc)

    author_sub_schema = StructType([
        StructField("author", StringType(), True),
        StructField("subreddit", StringType(), True),
        StructField("rating", LongType(), True)
    ])
    asr_df = sql_context.createDataFrame(author_subreddit_rating_rdd, author_sub_schema)

    author_rdd = author_subreddit_rating_rdd.map(lambda (a, s, r): a)
    aid_rdd = author_rdd.distinct().zipWithUniqueId().cache()
    author_id_schema = StructType([
        StructField("author", StringType(), True),
        StructField("author_id", LongType(), True)
    ])
    aid_df = sql_context.createDataFrame(aid_rdd, author_id_schema)
    aid_s_r_df = aid_df.join(asr_df, on='author').drop('author').cache()

    subreddit_rdd = author_subreddit_rating_rdd.map(lambda (a, s, r): s)
    sid_rdd = subreddit_rdd.distinct().zipWithUniqueId().cache()
    subreddit_id_schema = StructType([
        StructField("subreddit", StringType(), True),
        StructField("subreddit_id", LongType(), True)
    ])
    sid_df = sql_context.createDataFrame(sid_rdd, subreddit_id_schema)
    aid_sid_r_df = sid_df.join(aid_s_r_df, on='subreddit').drop('subreddit').cache()
    row_aid_sid_r_rdd = aid_sid_r_df.rdd
    aid_sid_r_rdd = row_aid_sid_r_rdd.map(lambda row: (row.author_id, row.subreddit_id, row.rating))

    return aid_rdd, sid_rdd, aid_sid_r_rdd
開發者ID:wmaciel,項目名稱:redditDataAnalysis,代碼行數:31,代碼來源:sub_recommender.py

示例2: _get_data

 def _get_data(self):
     sql_context = SQLContext(self.sc)
     l = [
         (
         "I dont know why people think this is such a bad movie.",
         Vectors.sparse(3, {1: 1.0, 2: 1.0, 3: 1.0})
         ),
     ]
     return sql_context.createDataFrame(l, ['text', 'features'])
開發者ID:ngarneau,項目名稱:sentiment-analysis,代碼行數:9,代碼來源:transformers.py

示例3: _get_train_data

 def _get_train_data(self):
     sql_context = SQLContext(self.sc)
     l = [
         (1, Vectors.dense([1, 2, 3]), 1.0),
         (2, Vectors.dense([1, 2, 3]), 0.0),
         (3, Vectors.dense([1, 2, 3]), 1.0),
         (4, Vectors.dense([1, 2, 3]), 0.0),
     ]
     return sql_context.createDataFrame(l, ['id', 'features', 'label'])
開發者ID:ngarneau,項目名稱:sentiment-analysis,代碼行數:9,代碼來源:pipelines.py

示例4: main

def main():
	conf = SparkConf().setAppName('artist_career')
	sc = SparkContext(conf=conf)
	assert sc.version >= '1.5.1'
	sqlContext=SQLContext(sc)
	inputs = sys.argv[1]
	output = sys.argv[2]
	customSchema = StructType([StructField('SongNumber', StringType(),False),StructField('SongID', StringType(),False),StructField('AlbumID', StringType(),False),StructField('AlbumName', StringType(),False),StructField('ArtistID', StringType(),False),StructField('ArtistLatitude', StringType(),False),StructField('ArtistLocation', StringType(),False),StructField('ArtistLongitude', StringType(),False),StructField('ArtistName', StringType(),False),StructField('Danceability', StringType(),False),StructField('Duration', StringType(),False),StructField('KeySignature', StringType(),False),StructField('KeySignatureConfidence', StringType(),False),StructField('Tempo', StringType(),False),StructField('TimeSignature', StringType(),False),StructField('TimeSignatureConfidence', StringType(),False),StructField('Title', StringType(),False),StructField('Year', StringType(),False),StructField('Energy', StringType(),False),StructField('ArtistFamiliarity', StringType(),False),StructField('ArtistMbid', StringType(),False),StructField('SongHotttnesss', StringType(),False),StructField('Loudness', StringType(),False),StructField('StartOfFadeOut', StringType(),False),StructField('EndOfFadeIn', StringType(),False),StructField('ModeConfidence', StringType(),False)])

	df= sqlContext.read.format('com.databricks.spark.csv').options(header='true').load(inputs,schema = customSchema)

	df.registerTempTable('artist_data')

	million_song=sqlContext.sql("SELECT SongNumber,SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,Title,Year,Energy,ArtistFamiliarity,ArtistMbid,SongHotttnesss,Loudness,StartOfFadeOut,EndOfFadeIn,ModeConfidence from artist_data where Year!=0 AND ArtistFamiliarity!='nan'")
	million_song.write.format('parquet').save(output)
開發者ID:BandeepSingh,項目名稱:Million-Song-DataSet-Analysis,代碼行數:15,代碼來源:artist_parquet.py

示例5: __init__

    def __init__(self):
        self.conf = (SparkConf()
                     .setAppName("BandCard")
                     .set("spark.cores.max", "2")
                     .set('spark.executor.extraClassPath', '/usr/local/env/lib/mysql-connector-java-5.1.38-bin.jar'))
        self.sc = SparkContext(conf=self.conf)
        self.sqlctx = SQLContext(self.sc)

        self.mysql_helper = MySQLHelper('core', host='10.9.29.212')
開發者ID:summer-apple,項目名稱:spark,代碼行數:9,代碼來源:band_card.py

示例6: ALS_fit

def ALS_fit():
    usern = request.args.get('usern')
    users_df = pd.read_sql_query('''SELECT DISTINCT mt3ratings.user, user_id FROM mt3ratings WHERE appdata = 1''', engine)
    if usern not in users_df['user'].values:
        return_str =  "can't find user"
        return jsonify(result = return_str)
    user_id = users_df.user_id[users_df.user == usern].values[0]
    try: key = request.args.get('key')
    except NameError: key = 'e'
    if key == 'abcd':
            #start spark

        try:
             conf = SparkConf().setAppName("BeerSleuthALS").set("spark.executor.memory", "4g")
             sc = SparkContext(conf=conf)
        except ValueError: pass
        sqlContext = SQLContext(sc)
        ratings_sqldf = modeling.get_item_user_rev_from_pg(engine, sqlContext)
        sqlContext.registerDataFrameAsTable(ratings_sqldf, "ratings")
        print('fitting model')
    	model = modeling.fit_final_model(ratings_sqldf)
        beer_ids = beer_dict.values()
        to_predict = zip([user_id]*len(beer_ids), beer_ids)
	to_predict_top20 = zip([user_id]*len(beer_id_filt), beer_id_filt)
        user_preds = model.predictAll(sc.parallelize(to_predict)).collect()
	user_preds_top20 = model.predictAll(sc.parallelize(to_predict_top20)).collect()
        print('got preds')
        preds = Counter({x[1]: x[2] for x in user_preds})
	preds_top20 = Counter({x[1]: x[2] for x in user_preds_top20})
        with open('%s%s_preds.pkl'%(pred_path, user_id),'wb') as f:
            pickle.dump(preds, f)
        with open('%s%s_preds_top20.pkl'%(pred_path, user_id),'wb') as f:
            pickle.dump(preds_top20, f)

        print('done')
        sc.stop()
        return jsonify(result="Model training complete, you may now get predictions")
開發者ID:JohnRenshaw,項目名稱:BeerSleuth,代碼行數:37,代碼來源:beersleuth_web.py

示例7: SparkContext

import os
import sys

from pyspark import SQLContext
from pyspark import SparkContext

#os.environ["SPARK_HOME"] = "/opt/spark-1.6.1-bin-hadoop2.6"
#os.environ["HADOOP_HOME"] = "/opt/hadoop"
#os.environ["HADOOP_PREFIX"] = "/opt/hadoop"

#os.environ["HIVE_HOME"] = "/opt/hive"


sc = SparkContext('local[1]')
sql_context = SQLContext(sc)
sql_context.setConf( "spark.sql.shuffle.partitions", "1")
sql_context.sql(""" use fex_test """)
開發者ID:hongbin0908,項目名稱:bintrade,代碼行數:17,代碼來源:sparklib.py

示例8: main

def main():

    sc = SparkContext(SPARK_ADDRESS, appName="RedditBatchLayer")
    #sc = SparkContext("local[*]", appName="RedditBatchLayer")
    bcURL = sc.broadcast(urlTitlePool)
    sqlContext = SQLContext(sc)

    conn = S3Connection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
    #conn = boto.connect_s3(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
    bucket = conn.get_bucket(RAW_JSON_REDDIT_BUCKET)

    def addTitleURL(cmtTuple):
        # 150,000/ 3000 = avg 50 comments/topic
        onePst = bcURL.value[randint(0, 3000)]
        return  cmtTuple + (onePst[0], onePst[1]) # adding title and url


    if (smallBatch): 
        logFile = 's3a://reddit-comments/2007/RC_2007-10'
        #df = sqlContext.read.json(logFile)
        df = sqlContext.jsonFile(logFile)
        users_rdd = df.filter(df['author'] != '[deleted]') 
        year = 2007
        month = 12
        users_row = users_rdd.map(lambda json: (json.author, '{0}_{1}'.format(year, month), json.created_utc, json.subreddit, json.id, json.body, json.score, json.ups, json.controversiality))\
                             .map(addTitleURL)
                             #.repartition(REPARTITION_SIZE)
        users_row.foreachPartition(insert_into_cassandra)

        # calculate user relationship graph
        # (URL, user) tuple
        post2user = users_row.map(lambda x: (x[10], x[0]))
        #graph     = post2user.join(post2user)\                       # self join to find user relationship by posts
        #                     .filter(lambda x: x[1][0] != x[1][1])\  # remove all self linked relationship
        #                     .map(makeAscOrder)\                     # make to asc order by user name
        #                     .distinct()\        # remove duplicated user pairs, because the relationship is mutual
        #                     .map(lambda x: (x[1], 1))\              # ready tho count number of common edges
        #                     .reduceByKey(lambda x, y: x+y)\         # count total number for every edge/relationship
        #                     .map(lambda x: (x[0][0], x[1], x[0][1]))# flatten and ready to write table
        graph     = post2user.join(post2user)\
                             .filter(lambda x: x[1][0] != x[1][1])\
                             .map(makeAscOrder)\
                             .distinct()\
                             .map(lambda x: (x[1], 1))\
                             .reduceByKey(lambda x, y: x+y)\
                             .map(lambda x: (x[0][0], x[1], x[0][1]))
        graph.foreachPartition(insert_graph)

    else:

        for key in bucket.list():
            if '-' not in key.name.encode('utf-8'): # filter out folders and _SUCCESS
                continue
            logFile = 's3a://{0}/{1}'.format(RAW_JSON_REDDIT_BUCKET, key.name.encode('utf-8'))
            year = logFile.split('-')[1][-4:] 
            month = logFile.split('-')[2]
            from_year = FROM_YEAR_MONTH.split('_')[0]
            from_month = FROM_YEAR_MONTH.split('_')[1]
            if int(year) < int(from_year) or (int(year) == int(from_year) and int(month) < int(from_month)):
                continue
            #df = sqlContext.read.json(logFile)
            df = sqlContext.jsonFile(logFile)
            users_rdd = df.filter(df['author'] != '[deleted]') 
                                                   #   0                     1                        2                3            4          5          6          7              8           9 (title)   10(url)
            users_row = users_rdd.map(lambda json: (json.author, '{0}_{1}'.format(year, month), json.created_utc, json.subreddit, json.id, json.body, json.score, json.ups, json.controversiality))\
                                 .map(addTitleURL)
                                 #.repartition(REPARTITION_SIZE)
            users_row.foreachPartition(insert_into_cassandra)

            # calculate user relationship graph
            # (URL, user) tuple
            post2user = users_row.map(lambda x: (x[10], x[0]))
            #graph     = post2user.join(post2user)\                       # self join to find user relationship by posts
            #                     .filter(lambda x: x[1][0] != x[1][1])\  # remove all self linked relationship
            #                     .map(makeAscOrder)\                     # make to asc order by user name
            #                     .distinct()\        # remove duplicated user pairs, because the relationship is mutual
            #                     .map(lambda x: (x[1], 1))\              # ready tho count number of common edges
            #                     .reduceByKey(lambda x, y: x+y)\         # count total number for every edge/relationship
            #                     .map(lambda x: (x[0][0], x[1], x[0][1]))# flatten and ready to write table
            graph     = post2user.join(post2user)\
                                 .filter(lambda x: x[1][0] != x[1][1])\
                                 .map(makeAscOrder)\
                                 .distinct()\
                                 .map(lambda x: (x[1], 1))\
                                 .reduceByKey(lambda x, y: x+y)\
                                 .map(lambda x: (x[0][0], x[1], x[0][1]))
                                 #.repartition(REPARTITION_SIZE)
            graph.foreachPartition(insert_graph)

    sc.stop()
開發者ID:europelee,項目名稱:HottestTopicOnReddit,代碼行數:90,代碼來源:reddit2cassandra.py

示例9: SparkContext

    '''
    DAY_OFFSET=1
    #--set datetime
    now =datetime.datetime.now()
    pro_time=now-datetime.timedelta(days=DAY_OFFSET)
    dest_time_str=pro_time.strftime("%Y%m%d")
    '''
    master = "spark://master:7077"
    sep = "\t"
    app_name = 'user_sign_in_app'
    '''
    spark_home='/opt/cloud/spark'
    os.environ['SPARK_HOME']=spark_home
    '''
    sc = SparkContext(master, app_name)
    sql_context = SQLContext(sc)

    lines = sc.textFile(input)
    parts = lines.map(lambda l: l.split(sep)).filter(lambda x: len(x) == 18)
    '''
    portal id(*) gw_id user_id user_name
    login_time logout_time(*) mac ip user_agent
    download_flow(*) upload_flow(*) os browser ratio
    batch_no user_type supp_id
    '''
    user_login = parts.map(lambda p: (p[1].strip(), p[2].strip(),p[17].strip(),p[3].strip(),p[16].strip(),
                                  p[4].strip(),p[5].strip(),p[6].strip(),p[7].strip(),p[8].strip(),
                                  p[9].strip(),p[10].strip(),p[11].strip(),p[12].strip(),p[13].strip(),
                                  p[14].strip(),p[15].strip()))
    schema_string = "id gw_id supp_id user_id user_type " \
                   "user_name login_time logout_time mac ip " \
開發者ID:wangcunxin,項目名稱:spark_py,代碼行數:31,代碼來源:user_sign_in.py

示例10: SparkConf

if __name__ == '__main__':
    conf = SparkConf()

    sc = SparkContext(conf=conf)

    datadir = "/Users/eyalbenivri/Developer/projects/spark-workshop/data/"

    # sudo dpkg --configure -a
    # sudo apt-get install python-setuptools
    # sudo easy_install dateutils
    # Download pyspark_csv.py from https://github.com/seahboonsiew/pyspark-csv
    sys.path.append('/Users/eyalbenivri/Developer/libs/pyspark_libs')  # replace as necessary
    import pyspark_csv

    sc.addFile('/Users/eyalbenivri/Developer/libs/pyspark_libs/pyspark_csv.py')  # ditto
    sqlContext = SQLContext(sc)

    # Task 1: load the prop-prices.csv file as an RDD, and use the csvToDataFrame function from the pyspark_csv module
    # to create a DataFrame and register it as a temporary table so that you can run SQL queries:
    print("------- ******* Task 1 ******* -------")
    columns = ['id', 'price', 'date', 'zip', 'type', 'new', 'duration', 'PAON',
               'SAON', 'street', 'locality', 'town', 'district', 'county', 'ppd',
               'status']

    rdd = sc.textFile(datadir + "prop-prices.csv")
    df = pyspark_csv.csvToDataFrame(sqlContext, rdd, columns=columns)
    df.registerTempTable("properties")
    df.persist()

    # Task 2: let's do some basic analysis on the data.
    # Find how many records we have per year, and print them out sorted by year.
開發者ID:eyalbenivri,項目名稱:sdp-spark-workshop,代碼行數:31,代碼來源:lab4-solution.py

示例11: SparkContext

if __name__ == '__main__':
    # --set datetime
    DAY_OFFSET = 1
    now = datetime.datetime.now()
    pro_time = now - datetime.timedelta(days=DAY_OFFSET)
    day = pro_time.strftime("%Y%m%d")

    master = "spark://hadoop:7077"
    appName = "spark_pageflow_outflow"
    input = "/impala/parquet/site/site-pageflowv1/dat=%s" % day

    spark_home = '/opt/cloud/spark'
    os.environ['SPARK_HOME'] = spark_home

    sc = SparkContext(master, appName)
    sql_context = SQLContext(sc)
    sql_context.registerFunction("to_day", lambda x: mill_date_str(x), StringType())
    sql_context.registerFunction("to_str", lambda x: bytearray_str(x), StringType())

    parquet_df = sql_context.read.parquet(input)
    sql_context.registerDataFrameAsTable(parquet_df, "site_pageflowv1")

    _sql = "select to_str(url),to_day(createtime) day,count(1) pv,count(distinct to_str(guuid)) uv " \
           "from site_pageflowv1 where dat= %s and to_str(name)='outflow' " \
           "group by to_str(url),to_day(createtime)" % day

    rs_df = sql_context.sql(_sql)
    rs = rs_df.collect()
    logger.info("---->" + str(len(rs)))

    list = []
開發者ID:wangcunxin,項目名稱:spark_py,代碼行數:31,代碼來源:main.py

示例12: SparkContext

    ymd = pro_time.strftime("%Y%m%d")

    master = "spark://hadoop:7077"
    appName = "spark_loginflowlog"
    #input = "/impala/parquet/back/back-portal-loginflowlog/dat=%s*" % ym
    input = '/input/loginfowlog/*'

    spark_home = '/opt/cloud/spark'
    os.environ['SPARK_HOME'] = spark_home
    conf = (SparkConf()
            .setMaster(master)
            .setAppName(appName)
            .set("spark.sql.parquet.binaryAsString","true")
            )
    sc = SparkContext(conf = conf)
    sql_context = SQLContext(sc)
    sql_context.registerFunction("to_mac", lambda x: normal_mac(x), StringType())

    parquet_df = sql_context.read.parquet(input)
    sql_context.registerDataFrameAsTable(parquet_df, "loginflowlog")
    #_sql = "select to_mac(upper(usermac)),count(distinct dat) days from loginflowlog group by to_mac(upper(usermac))"
    _sql = "select to_mac(upper(usermac)),count(distinct logtime) days from loginflowlog group by to_mac(upper(usermac))"
    rs_df = sql_context.sql(_sql)
    rs = rs_df.collect()
    logger.info("---->" + str(len(rs)))

    lists = []
    for r in rs:
        usermac = r[0]
        days = r[1]
        t = (usermac,days)
開發者ID:wangcunxin,項目名稱:spark_py,代碼行數:31,代碼來源:login_days_main.py

示例13: SparkContext

    logger.info(day)
    '''
    #
    spark_home = '/opt/cloud/spark'
    os.environ['SPARK_HOME'] = spark_home

    #master = "spark://hadoop:7077"
    master = "local[1]"
    app_name = "spark_transferdata"
    sep = "\t"
    #input = "/data/140301_150731.csv"
    input = "/input/loginlog/2015"
    output = "/output/loginlog/2015"

    sc = SparkContext(master, app_name)
    sqlContext = SQLContext(sc)
    # load
    lines = sc.textFile(input)
    rdd = lines.map(lambda l: l.split(sep))\
        .filter(lambda l:len(l)==11)\
        .map(lambda l:(l[0],l[1],l[2],to_long(l[3]),l[4],
                       long(l[5]),long(l[6]),l[7],l[8],l[9],
                       to_long(l[10])))
    # uid,adid,guuid,guuidctime,url,referer,hosid,gwid,ua,ip,createtime
    # uid,adid,guuid,createtime
    fields = [
        StructField('uid', StringType(), True),
        StructField('adid', StringType(), True),
        StructField('guuid', StringType(), True),
        StructField('guuidctime', LongType(), True),
        StructField('url', StringType(), True),
開發者ID:wangcunxin,項目名稱:spark_py,代碼行數:31,代碼來源:transfer_advload.py

示例14: get_date

    select_userlogin_repeat = "select get_date(login_time) as day,hos_id,mac,login_time from wxcity_userlogin_info where login_time >= '%s 00:00:00' and login_time <='%s 23:59:59' order by day,hos_id,mac,login_time"
    select_userlogin_repeat_sta = "select day,hos_id,sum(t2),sum(t5),sum(t10),sum(t30),sum(t60) from repeat_login_list group by day,hos_id"


if __name__ == '__main__':

    if len(sys.argv) != 5:
        print("Usage: spark_streaming.py <master> <begin> <end> <input>", file=sys.stderr)
        exit(-1)

    master, time_begin, time_end, input = sys.argv[1:]
    input_path = input + '/' + time_begin + '.csv'
    logger.info("--->" + master + " " + input_path)

    sc = SparkContext(master, 'wxcity_userlogin_repeat_app')
    sql_context = SQLContext(sc)

    lines = sc.hadoopFile(input,
                          'org.apache.hadoop.mapred.TextInputFormat',
                          'org.apache.hadoop.io.LongWritable',
                          'org.apache.hadoop.io.Text'
                          )

    rs_tuples = MysqlDao().findWithQuery(ConfigPortalSql.select_mysql_hos_gw_sup)
    gwid_hosid_dict = {}
    for r in rs_tuples:
        hos_id = str(r[0])
        gw_id = r[1]
        gwid_hosid_dict[gw_id] = hos_id
    logger.debug('-->gwid_hosid:' + str(gwid_hosid_dict.__len__()))
    users = lines.map(lambda x: x[1].split(',')).filter(lambda x: len(x) == 17) \
開發者ID:wangcunxin,項目名稱:spark_py,代碼行數:31,代碼來源:userlogin_repeat.py

示例15: SparkContext

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 21 09:31:37 2016

@author: rsk
"""
from pyspark import SparkContext
from pyspark import SQLContext
sc = SparkContext("local","recommendationEngineApp")
sqlContext = SQLContext(sc)

from pyspark.sql import SQLContext,Row
#from pyspark.sql import Functions as F

dataDir = "/home/rsk/Documents/Spark"

userData = sc.textFile(dataDir+"/ml-100k/u.user").map(lambda x : x.split("|"))
movieData = sc.textFile(dataDir+"/ml-100k/u.item").map(lambda x : x.split("|"))
ratingData = sc.textFile(dataDir+"/ml-100k/u.data").map(lambda x : x.split("\t"))

#%%

ratingDataDF = ratingData.map(lambda x : Row(userID = int(x[0]),
                        movieID = int(x[1]),
                        rating=float(x[2]),
                        timestamp = int(x[3])))
ratingDataDF = sqlContext.createDataFrame(ratingDataDF)

userDataDF = userData.map(lambda x : Row(userID=int(x[0]),
                                        age = int(x[1]),
                                        gender = x[2],
開發者ID:rsk2327,項目名稱:RecommendationEngine,代碼行數:31,代碼來源:PySpark_code.py


注:本文中的pyspark.SQLContext類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。