本文整理匯總了Python中pyrr.Matrix44.from_x_rotation方法的典型用法代碼示例。如果您正苦於以下問題:Python Matrix44.from_x_rotation方法的具體用法?Python Matrix44.from_x_rotation怎麽用?Python Matrix44.from_x_rotation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyrr.Matrix44
的用法示例。
在下文中一共展示了Matrix44.from_x_rotation方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getModelMatrix
# 需要導入模塊: from pyrr import Matrix44 [as 別名]
# 或者: from pyrr.Matrix44 import from_x_rotation [as 別名]
def getModelMatrix(self):
scale = mat4.from_scale([0.2, 0.2, 0.2])
roty = mat4.from_y_rotation(-self.hAngle)
vdiff = self.vAngle - self.oldvAngle
rotx = mat4.from_x_rotation(self.getxRot(vdiff))
zdiff = self.hAngle - self.oldhAngle
rotz = mat4.from_z_rotation(-self.getzRot(zdiff))
trans = mat4.from_translation(self.position, dtype='f')
self.oldhAngle = self.hAngle
self.oldvAngle = self.vAngle
return scale * rotz * rotx * roty * trans
示例2: test_m44_q_equivalence
# 需要導入模塊: from pyrr import Matrix44 [as 別名]
# 或者: from pyrr.Matrix44 import from_x_rotation [as 別名]
def test_m44_q_equivalence(self):
"""Test for equivalance of matrix and quaternion rotations.
Create a matrix and quaternion, rotate each by the same values
then convert matrix<->quaternion and check the results are the same.
"""
m = Matrix44.from_x_rotation(np.pi / 2.)
mq = Quaternion.from_matrix(m)
q = Quaternion.from_x_rotation(np.pi / 2.)
qm = Matrix44.from_quaternion(q)
self.assertTrue(np.allclose(np.dot([1., 0., 0., 1.], m), [1., 0., 0., 1.]))
self.assertTrue(np.allclose(np.dot([1., 0., 0., 1.], qm), [1., 0., 0., 1.]))
self.assertTrue(np.allclose(q * Vector4([1., 0., 0., 1.]), [1., 0., 0., 1.]))
self.assertTrue(np.allclose(mq * Vector4([1., 0., 0., 1.]), [1., 0., 0., 1.]))
np.testing.assert_almost_equal(np.array(q), np.array(mq), decimal=5)
np.testing.assert_almost_equal(np.array(m), np.array(qm), decimal=5)
示例3: render
# 需要導入模塊: from pyrr import Matrix44 [as 別名]
# 或者: from pyrr.Matrix44 import from_x_rotation [as 別名]
def render(self, app, currentTime):
glBindVertexArray(self._vao.identifier)
try:
glUseProgram(self._program.identifier)
bg_color = (
math.sin(currentTime) * 0.5 + 0.5,
math.cos(currentTime) * 0.5 + 0.5,
0.0,
1.0
)
glClearBufferfv(GL_COLOR, 0, bg_color)
glClearBufferfv(GL_DEPTH, 0, [1])
f = currentTime * 0.3
mv_matrix = Matrix44.identity(dtype='f4')
mv_matrix *= Matrix44.from_x_rotation(
currentTime * math.radians(81))
mv_matrix *= Matrix44.from_y_rotation(
currentTime * math.radians(45))
mv_matrix *= Matrix44.from_translation([
math.sin(2.1 * f) * 0.5,
math.cos(1.7 * f) * 0.5,
math.sin(1.3 * f) * math.cos(1.5 * f) * 2.0])
mv_matrix *= Matrix44.from_translation([0.0, 0.0, -4.0])
self._uniform_block.mv_matrix[:] = mv_matrix.reshape(16)
glBufferSubData(
GL_UNIFORM_BUFFER,
0,
ctypes.sizeof(self._uniform_block),
ctypes.byref(self._uniform_block))
self._torus_obj.render()
finally:
glBindVertexArray(NULL_GL_OBJECT)
示例4: test_operators
# 需要導入模塊: from pyrr import Matrix44 [as 別名]
# 或者: from pyrr.Matrix44 import from_x_rotation [as 別名]
def test_operators(self):
from pyrr import Quaternion, Matrix44, Matrix33, Vector3, Vector4
import numpy as np
# matrix multiplication
m = Matrix44() * Matrix33()
m = Matrix44() * Quaternion()
m = Matrix33() * Quaternion()
# matrix inverse
m = ~Matrix44.from_x_rotation(np.pi)
# quaternion multiplication
q = Quaternion() * Quaternion()
q = Quaternion() * Matrix44()
q = Quaternion() * Matrix33()
# quaternion inverse (conjugate)
q = ~Quaternion()
# quaternion dot product
d = Quaternion() | Quaternion()
# vector oprations
v = Vector3() + Vector3()
v = Vector4() - Vector4()
# vector transform
v = Quaternion() * Vector3()
v = Matrix44() * Vector3()
v = Matrix44() * Vector4()
v = Matrix33() * Vector3()
# dot and cross products
dot = Vector3() | Vector3()
cross = Vector3() ^ Vector3()