當前位置: 首頁>>代碼示例>>Python>>正文


Python Environment.run方法代碼示例

本文整理匯總了Python中pypet.Environment.run方法的典型用法代碼示例。如果您正苦於以下問題:Python Environment.run方法的具體用法?Python Environment.run怎麽用?Python Environment.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pypet.Environment的用法示例。


在下文中一共展示了Environment.run方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    batch = get_batch()

    filename = 'saga_%s.hdf5' % str(batch)
    env = Environment(trajectory='Example_22_Euler_Integration_%s' % str(batch),
                      filename=filename,
                      file_title='Example_22_Euler_Integration',
                      comment='Go for Euler!',
                      overwrite_file=True,
                      multiproc=True,  # Yes we can use multiprocessing within each batch!
                      ncores=4)

    traj = env.trajectory
    trajectory_name = traj.v_name

    # 1st a) phase parameter addition
    add_parameters(traj)

    # 1st b) phase preparation
    # We will add the differential equation (well, its source code only) as a derived parameter
    traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
                                 comment='Source code of our equation!')

    # explore the trajectory
    explore_batch(traj, batch)

    # 2nd phase let's run the experiment
    # We pass `euler_scheme` as our top-level simulation function and
    # the Lorenz equation 'diff_lorenz' as an additional argument
    env.run(euler_scheme, diff_lorenz)
開發者ID:SmokinCaterpillar,項目名稱:pypet,代碼行數:32,代碼來源:the_task.py

示例2: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():

    filename = os.path.join('hdf5', 'FiringRate.hdf5')
    env = Environment(trajectory='FiringRate',
                      comment='Experiment to measure the firing rate '
                            'of a leaky integrate and fire neuron. '
                            'Exploring different input currents, '
                            'as well as refractory periods',
                      add_time=False, # We don't want to add the current time to the name,
                      log_stdout=True,
                      log_config='DEFAULT',
                      multiproc=True,
                      ncores=2, #My laptop has 2 cores ;-)
                      wrap_mode='QUEUE',
                      filename=filename,
                      overwrite_file=True)

    traj = env.trajectory

    # Add parameters
    add_parameters(traj)

    # Let's explore
    add_exploration(traj)

    # Ad the postprocessing function
    env.add_postprocessing(neuron_postproc)

    # Run the experiment
    env.run(run_neuron)

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:35,代碼來源:main.py

示例3: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    """ Main *boilerplate* function to start simulation """
    # Now let's make use of logging
    logger = logging.getLogger()

    # Create folders for data and plots
    folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_pypet')
    if not os.path.isdir(folder):
        os.makedirs(folder)
    filename = os.path.join(folder, 'all_patterns.hdf5')

    # Create an environment
    env = Environment(trajectory='cellular_automata',
                      multiproc=True,
                      ncores=4,
                      wrap_mode='QUEUE',
                      filename=filename,
                      overwrite_file=True)

    # extract the trajectory
    traj = env.traj

    traj.v_lazy_adding = True
    traj.par.ncells = 400, 'Number of cells'
    traj.par.steps = 250, 'Number of timesteps'
    traj.par.rule_number = 30, 'The ca rule'
    traj.par.initial_name = 'random', 'The type of initial state'
    traj.par.seed = 100042, 'RNG Seed'


    # Explore
    exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
                'initial_name' : ['single', 'random'],}
    # # You can uncomment the ``exp_dict`` below to see that changing the
    # # exploration scheme is now really easy:
    # exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
    #             'ncells' : [100, 200, 300],
    #             'seed': [333444555, 123456]}
    exp_dict = cartesian_product(exp_dict)
    traj.f_explore(exp_dict)

    # Run the simulation
    logger.info('Starting Simulation')
    env.run(wrap_automaton)

    # Load all data
    traj.f_load(load_data=2)

    logger.info('Printing data')
    for idx, run_name in enumerate(traj.f_iter_runs()):
        # Plot all patterns
        filename = os.path.join(folder, make_filename(traj))
        plot_pattern(traj.crun.pattern, traj.rule_number, filename)
        progressbar(idx, len(traj), logger=logger)

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:59,代碼來源:pypetwrap.py

示例4: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    """Main function to protect the *entry point* of the program.

    If you want to use multiprocessing under Windows you need to wrap your
    main code creating an environment into a function. Otherwise
    the newly started child processes will re-execute the code and throw
    errors (also see https://docs.python.org/2/library/multiprocessing.html#windows).

    """

    # Create an environment that handles running.
    # Let's enable multiprocessing with 2 workers.
    filename = os.path.join('hdf5', 'example_04.hdf5')
    env = Environment(trajectory='Example_04_MP',
                      filename=filename,
                      file_title='Example_04_MP',
                      log_stdout=True,
                      comment='Multiprocessing example!',
                      multiproc=True,
                      ncores=4,
                      use_pool=True,  # Our runs are inexpensive we can get rid of overhead
                      # by using a pool
                      freeze_input=True,  # We can avoid some
                      # overhead by freezing the input to the pool
                      wrap_mode=pypetconstants.WRAP_MODE_QUEUE,
                      graceful_exit=True,  # We want to exit in a data friendly way
                      # that safes all results after hitting CTRL+C, try it ;-)
                      overwrite_file=True)

    # Get the trajectory from the environment
    traj = env.trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1.0, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1.0, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product, but we want to explore a bit more
    traj.f_explore(cartesian_product({'x':[float(x) for x in range(20)],
                                      'y':[float(y) for y in range(20)]}))

    # Run the simulation
    env.run(multiply)

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:SmokinCaterpillar,項目名稱:pypet,代碼行數:47,代碼來源:example_04_multiprocessing.py

示例5: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    """Main function to protect the *entry point* of the program.

    If you want to use multiprocessing with SCOOP you need to wrap your
    main code creating an environment into a function. Otherwise
    the newly started child processes will re-execute the code and throw
    errors (also see http://scoop.readthedocs.org/en/latest/usage.html#pitfalls).

    """

    # Create an environment that handles running.
    # Let's enable multiprocessing with scoop:
    filename = os.path.join('hdf5', 'example_21.hdf5')
    env = Environment(trajectory='Example_21_SCOOP',
                      filename=filename,
                      file_title='Example_21_SCOOP',
                      log_stdout=True,
                      comment='Multiprocessing example using SCOOP!',
                      multiproc=True,
                      freeze_input=True, # We want to save overhead and freeze input
                      use_scoop=True, # Yes we want SCOOP!
                      wrap_mode=pypetconstants.WRAP_MODE_LOCAL,  # SCOOP only works with 'LOCAL'
                      # or 'NETLOCK' wrapping
                      overwrite_file=True)

    # Get the trajectory from the environment
    traj = env.trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1.0, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1.0, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product, but we want to explore a bit more
    traj.f_explore(cartesian_product({'x':[float(x) for x in range(20)],
                                      'y':[float(y) for y in range(20)]}))
    # Run the simulation
    env.run(multiply)

    # Let's check that all runs are completed!
    assert traj.f_is_completed()

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:45,代碼來源:example_21_scoop_multiprocessing.py

示例6: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    # Create an environment that handles running
    filename = os.path.join('hdf5','example_18.hdf5')
    env = Environment(trajectory='Multiplication',
                      filename=filename,
                      file_title='Example_18_Many_Runs',
                      overwrite_file=True,
                      comment='Contains many runs',
                      multiproc=True,
                      use_pool=True,
                      freeze_input=True,
                      ncores=2,
                      wrap_mode='QUEUE')

    # The environment has created a trajectory container for us
    traj = env.trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product, yielding 2500 runs
    traj.f_explore(cartesian_product({'x': range(50), 'y': range(50)}))

    # Run the simulation
    env.run(multiply)

    # Disable logging
    env.disable_logging()

    # turn auto loading on, since results have not been loaded, yet
    traj.v_auto_load = True
    # Use the `v_idx` functionality
    traj.v_idx = 2042
    print('The result of run %d is: ' % traj.v_idx)
    # Now we can rely on the wildcards
    print(traj.res.crunset.crun.z)
    traj.v_idx = -1
    # Or we can use the shortcuts `rts_X` (run to set) and `r_X` to get particular results
    print('The result of run %d is: ' % 2044)
    print(traj.res.rts_2044.r_2044.z)
開發者ID:SmokinCaterpillar,項目名稱:pypet,代碼行數:43,代碼來源:example_18_many_runs.py

示例7: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main(inputargs):
    args = docopt(__doc__, argv=inputargs)
    wavpath = path.join(modulePath, "resources", "tone_in_noise")
    stimuli = [path.join(wavpath, i) for i in glob.glob(path.join(wavpath, "*.wav"))]
    outfile = path.realpath(path.expanduser(args["--out"]))
    env = Environment(trajectory='tone-in-noise',
                      filename=outfile,
                      overwrite_file=True,
                      file_title="Tone in noise at different SNR",
                      comment="some comment",
                      large_overview_tables="False",
                      # freeze_input=True,
                      # use_pool=True,
                      multiproc=True,
                      ncores=3,
                      graceful_exit=True,
                      #wrap_mode=pypetconstants.WRAP_MODE_QUEUE,
                      )

    traj = env.trajectory
    traj.f_add_parameter('periphery', 'verhulst', comment="which periphery was used")
    traj.f_add_parameter('brainstem', 'nelsoncarney04', comment="which brainstem model was used")
    traj.f_add_parameter('weighting', "--no-cf-weighting ", comment="weighted CFs")
    traj.f_add_parameter('wavfile', '', comment="Which wav file to run")
    traj.f_add_parameter('level', 80, comment="stimulus level, spl")
    traj.f_add_parameter('neuropathy', "none", comment="")

    parameter_dict = {
        "periphery" : ['verhulst', 'zilany'],
        "brainstem" : ['nelsoncarney04', 'carney2015'],
        "weighting" : [cf_weighting, ""],
        "wavfile"   : stimuli,
        "level"     : [80],
        "neuropathy": ["none", "moderate", "severe", "ls-moderate", "ls-severe"]
    }

    traj.f_explore(cartesian_product(parameter_dict))
    env.run(tone_in_noise)
    return 0
開發者ID:gvoysey,項目名稱:corti,代碼行數:41,代碼來源:tone_in_noise.py

示例8: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():
    # Create an environment that handles running
    filename = os.path.join('hdf5', 'example_12.hdf5')
    env = Environment(trajectory='Multiplication',
                      filename=filename,
                      file_title='Example_12_Sharing_Data',
                      overwrite_file=True,
                      comment='The first example!',
                      continuable=False, # We have shared data in terms of a multiprocessing list,
                      # so we CANNOT use the continue feature.
                      multiproc=True,
                      ncores=2)

    # The environment has created a trajectory container for us
    traj = env.trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product
    traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))

    # We want a shared list where we can put all out results in. We use a manager for this:
    result_list = mp.Manager().list()
    # Let's make some space for potential results
    result_list[:] =[0 for _dummy in range(len(traj))]

    # Run the simulation
    env.run(multiply, result_list)

    # Now we want to store the final list as numpy array
    traj.f_add_result('z', np.array(result_list))

    # Finally let's print the result to see that it worked
    print(traj.z)

    #Disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:41,代碼來源:example_12_sharing_data_between_processes.py

示例9: print

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
# The environment has created a trajectory container for us
traj = env.trajectory

# Add both parameters
traj.v_lazy_adding = True
traj.par.x = 1, 'I am the first dimension!'
traj.par.y = 1, 'I am the second dimension!'

# Explore just two points
traj.f_explore({'x': [3, 4]})

# So far everything was as in the first example. However now we add links:
traj.f_add_link('mylink1', traj.f_get('x'))
# Note the `f_get` here to ensure to get the parameter instance, not the value 1
# This allows us now to access x differently:
print('x=' + str(traj.mylink1))
# We can try to avoid fast access as well, and recover the original parameter
print(str(traj.f_get('mylink1')))
# And also colon notation is allowed that creates new groups on the fly
traj.f_add_link('parameters.mynewgroup.mylink2', traj.f_get('y'))



# And, of course, we can also use the links during run:
env.run(multiply)

# Finally disable logging and close all log-files
env.disable_logging()

開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:30,代碼來源:example_14_links.py

示例10: O

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
traj2 = env2.trajectory

# Add both parameters
traj1.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj1.f_add_parameter('y', 1.0, comment='I am the second dimension!')
traj2.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj2.f_add_parameter('y', 1.0, comment='I am the second dimension!')

# Explore the parameters with a cartesian product for the first trajectory:
traj1.f_explore(cartesian_product({'x':[1.0,2.0,3.0,4.0], 'y':[6.0,7.0,8.0]}))
# Let's explore slightly differently for the second:
traj2.f_explore(cartesian_product({'x':[3.0,4.0,5.0,6.0], 'y':[7.0,8.0,9.0]}))


# Run the simulations with all parameter combinations
env1.run(multiply)
env2.run(multiply)

# Now we merge them together into traj1
# We want to remove duplicate entries
# like the parameter space point x=3.0, y=7.0.
# Several points have been explored by both trajectories and we need them only once.
# Therefore, we set remove_duplicates=True (Note this takes O(N1*N2)!).
# We also want to backup both trajectories, but we let the system choose the filename.
# Accordingly we choose backup_filename=True instead of providing a filename.
# We want to move the hdf5 nodes from one trajectory to the other.
# Thus we set move_nodes=True.
# Finally,we want to delete the other trajectory afterwards since we already have a backup.
traj1.f_merge(traj2,
              remove_duplicates=True,
              backup_filename=True,
開發者ID:SmokinCaterpillar,項目名稱:pypet,代碼行數:33,代碼來源:example_03_trajectory_merging.py

示例11: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():

    env = Environment(trajectory='postproc_deap',
                      overwrite_file=True,
                      log_stdout=False,
                      log_level=50,  # only display ERRORS
                      automatic_storing=True,  # Since we us post-processing, we
                      # can safely enable automatic storing, because everything will
                      # only be stored once at the very end of all runs.
                      comment='Using pypet and DEAP with less overhead'
                      )
    traj = env.traj


    # ------- Add parameters ------- #
    traj.f_add_parameter('popsize', 100, comment='Population size')
    traj.f_add_parameter('CXPB', 0.5, comment='Crossover term')
    traj.f_add_parameter('MUTPB', 0.2, comment='Mutation probability')
    traj.f_add_parameter('NGEN', 20, comment='Number of generations')

    traj.f_add_parameter('generation', 0, comment='Current generation')
    traj.f_add_parameter('ind_idx', 0, comment='Index of individual')
    traj.f_add_parameter('ind_len', 50, comment='Length of individual')

    traj.f_add_parameter('indpb', 0.005, comment='Mutation parameter')
    traj.f_add_parameter('tournsize', 3, comment='Selection parameter')

    traj.f_add_parameter('seed', 42, comment='Seed for RNG')


    # Placeholders for individuals and results that are about to be explored
    traj.f_add_derived_parameter('individual', [0 for x in range(traj.ind_len)],
                                 'An indivudal of the population')
    traj.f_add_result('fitnesses', [], comment='Fitnesses of all individuals')


    # ------- Create and register functions with DEAP ------- #
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()
    # Attribute generator
    toolbox.register("attr_bool", random.randint, 0, 1)
    # Structure initializers
    toolbox.register("individual", tools.initRepeat, creator.Individual,
        toolbox.attr_bool, traj.ind_len)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Operator registering
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=traj.indpb)
    toolbox.register("select", tools.selTournament, tournsize=traj.tournsize)


    # ------- Initialize Population and Trajectory -------- #
    random.seed(traj.seed)
    pop = toolbox.population(n=traj.popsize)

    eval_pop = [ind for ind in pop if not ind.fitness.valid]
    traj.f_explore(cartesian_product({'generation': [0],
                                     'ind_idx': range(len(eval_pop)),
                                     'individual':[list(x) for x in eval_pop]},
                                        [('ind_idx', 'individual'),'generation']))

    # ----------- Add postprocessing ------------------ #
    postproc = Postprocessing(pop, eval_pop, toolbox)  # Add links to important structures
    env.add_postprocessing(postproc)

    # ------------ Run applying post-processing ---------- #
    env.run(eval_one_max)

    # ------------ Finished all runs and print result --------------- #
    print("-- End of (successful) evolution --")
    best_ind = tools.selBest(pop, 1)[0]
    print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values))
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:77,代碼來源:example_19c_using_deap_with_post_processing.py

示例12: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():

    filename = os.path.join('hdf5', 'example_06.hdf5')
    env = Environment(trajectory='Example_06_Euler_Integration',
                      filename=filename,
                      file_title='Example_06_Euler_Integration',
                      overwrite_file=True,
                      comment = 'Go for Euler!')


    traj = env.trajectory

    # 1st a) phase parameter addition
    # Remember we have some control flow in the `add_parameters` function, the default parameter
    # set we choose is the `'diff_lorenz'` one, but we want to deviate from that and use the
    # `'diff_roessler'`.
    # In order to do that we can preset the corresponding name parameter to change the
    # control flow:
    traj.f_preset_parameter('diff_name', 'diff_roessler') # If you erase this line, you will get
                                                          # again the lorenz attractor
    add_parameters(traj)

    # 1st b) phase preparation
    # Let's check which function we want to use
    if traj.diff_name=='diff_lorenz':
        diff_eq = diff_lorenz
    elif traj.diff_name=='diff_roessler':
        diff_eq = diff_roessler
    else:
        raise ValueError('I don\'t know what %s is.' % traj.diff_name)
    # And add the source code of the function as a derived parameter.
    traj.f_add_derived_parameter(FunctionParameter, 'diff_eq', diff_eq,
                                     comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for now

    # 2nd phase let's run the experiment
    # We pass 'euler_scheme' as our top-level simulation function and
    # the Roessler function as an additional argument
    env.run(euler_scheme, diff_eq)

    # Again no post-processing

    # 4th phase analysis.
    # I would recommend to do the analysis completely independent from the simulation
    # but for simplicity let's do it here.
    # We won't reload the trajectory this time but simply update the skeleton
    traj.f_load_skeleton()

    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions.
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        # Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once, but for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        # Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:89,代碼來源:example_06_parameter_presetting.py

示例13: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import run [as 別名]
def main():

    filename = os.path.join('hdf5', 'example_05.hdf5')
    env = Environment(trajectory='Example_05_Euler_Integration',
                      filename=filename,
                      file_title='Example_05_Euler_Integration',
                      overwrite_file=True,
                      comment='Go for Euler!')


    traj = env.trajectory
    trajectory_name = traj.v_name

    # 1st a) phase parameter addition
    add_parameters(traj)

    # 1st b) phase preparation
    # We will add the differential equation (well, its source code only) as a derived parameter
    traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
                                 comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for an illustrative example

    # 2nd phase let's run the experiment
    # We pass `euler_scheme` as our top-level simulation function and
    # the Lorenz equation 'diff_lorenz' as an additional argument
    env.run(euler_scheme, diff_lorenz)

    # We don't have a 3rd phase of post-processing here

    # 4th phase analysis.
    # I would recommend to do post-processing completely independent from the simulation,
    # but for simplicity let's do it here.

    # Let's assume that we start all over again and load the entire trajectory new.
    # Yet, there is an error within this approach, do you spot it?
    del traj
    traj = Trajectory(filename=filename)

    # We will only fully load parameters and derived parameters.
    # Results will be loaded manually later on.
    try:
        # However, this will fail because our trajectory does not know how to
        # build the FunctionParameter. You have seen this coming, right?
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)
    except ImportError as e:

        print('That did\'nt work, I am sorry: %s ' % str(e))

        # Ok, let's try again but this time with adding our parameter to the imports
        traj = Trajectory(filename=filename,
                           dynamically_imported_classes=FunctionParameter)

        # Now it works:
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)


    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions:
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        #Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once. But for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        #Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # You have to click through the images to stop the example_05 module!

    # Finally disable logging and close all log-files
    env.disable_logging()
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:101,代碼來源:example_05_custom_parameter.py


注:本文中的pypet.Environment.run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。