當前位置: 首頁>>代碼示例>>Python>>正文


Python Environment.f_disable_logging方法代碼示例

本文整理匯總了Python中pypet.Environment.f_disable_logging方法的典型用法代碼示例。如果您正苦於以下問題:Python Environment.f_disable_logging方法的具體用法?Python Environment.f_disable_logging怎麽用?Python Environment.f_disable_logging使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pypet.Environment的用法示例。


在下文中一共展示了Environment.f_disable_logging方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_logging_stdout

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    def test_logging_stdout(self):
        filename = 'teststdoutlog.hdf5'
        filename = make_temp_dir(filename)
        folder = make_temp_dir('logs')
        env = Environment(trajectory=make_trajectory_name(self),
                          filename=filename, log_config=get_log_config(),
                          # log_levels=logging.CRITICAL, # needed for the test
                          log_stdout=('STDOUT', 50), #log_folder=folder
                          )

        env.f_run(log_error)
        traj = env.v_traj
        path = get_log_path(traj)

        mainstr = 'sTdOuTLoGGinG'
        print(mainstr)
        env.f_disable_logging()

        mainfilename = os.path.join(path, 'LOG.txt')
        with open(mainfilename, mode='r') as mainf:
            full_text = mainf.read()

        self.assertTrue(mainstr in full_text)
        self.assertTrue('4444444' not in full_text)
        self.assertTrue('DEBUG' not in full_text)
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:27,代碼來源:logging_test.py

示例2: test_maximum_overview_size

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    def test_maximum_overview_size(self):

        filename = make_temp_dir('maxisze.hdf5')

        env = Environment(trajectory='Testmigrate', filename=filename,

                          log_config=get_log_config())

        traj = env.v_trajectory
        for irun in range(pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH):
            traj.f_add_parameter('f%d.x' % irun, 5)

        traj.f_store()


        store = ptcompat.open_file(filename, mode='r+')
        table = ptcompat.get_child(store.root,traj.v_name).overview.parameters_overview
        self.assertEquals(table.nrows, pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH)
        store.close()

        for irun in range(pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH,
                  2*pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH):
            traj.f_add_parameter('f%d.x' % irun, 5)

        traj.f_store()

        store = ptcompat.open_file(filename, mode='r+')
        table = ptcompat.get_child(store.root,traj.v_name).overview.parameters_overview
        self.assertEquals(table.nrows, pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH)
        store.close()

        env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:34,代碼來源:storage_test.py

示例3: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():

    filename = os.path.join('hdf5', 'FiringRate.hdf5')
    env = Environment(trajectory='FiringRate',
                      comment='Experiment to measure the firing rate '
                            'of a leaky integrate and fire neuron. '
                            'Exploring different input currents, '
                            'as well as refractory periods',
                      add_time=False, # We don't want to add the current time to the name,
                      log_stdout=True,
                      log_config='DEFAULT',
                      multiproc=True,
                      ncores=2, #My laptop has 2 cores ;-)
                      wrap_mode='QUEUE',
                      filename=filename,
                      overwrite_file=True)

    traj = env.v_trajectory

    # Add parameters
    add_parameters(traj)

    # Let's explore
    add_exploration(traj)

    # Ad the postprocessing function
    env.f_add_postprocessing(neuron_postproc)

    # Run the experiment
    env.f_run(run_neuron)

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:35,代碼來源:main.py

示例4: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
    """ Main *boilerplate* function to start simulation """
    # Now let's make use of logging
    logger = logging.getLogger()

    # Create folders for data and plots
    folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_pypet')
    if not os.path.isdir(folder):
        os.makedirs(folder)
    filename = os.path.join(folder, 'all_patterns.hdf5')

    # Create an environment
    env = Environment(trajectory='cellular_automata',
                      multiproc=True,
                      ncores=4,
                      wrap_mode='QUEUE',
                      filename=filename,
                      overwrite_file=True)

    # extract the trajectory
    traj = env.v_traj

    traj.v_lazy_adding = True
    traj.par.ncells = 400, 'Number of cells'
    traj.par.steps = 250, 'Number of timesteps'
    traj.par.rule_number = 30, 'The ca rule'
    traj.par.initial_name = 'random', 'The type of initial state'
    traj.par.seed = 100042, 'RNG Seed'


    # Explore
    exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
                'initial_name' : ['single', 'random'],}
    # # You can uncomment the ``exp_dict`` below to see that changing the
    # # exploration scheme is now really easy:
    # exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
    #             'ncells' : [100, 200, 300],
    #             'seed': [333444555, 123456]}
    exp_dict = cartesian_product(exp_dict)
    traj.f_explore(exp_dict)

    # Run the simulation
    logger.info('Starting Simulation')
    env.f_run(wrap_automaton)

    # Load all data
    traj.f_load(load_data=2)

    logger.info('Printing data')
    for idx, run_name in enumerate(traj.f_iter_runs()):
        # Plot all patterns
        filename = os.path.join(folder, make_filename(traj))
        plot_pattern(traj.crun.pattern, traj.rule_number, filename)
        progressbar(idx, len(traj), logger=logger)

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:59,代碼來源:pypetwrap.py

示例5: test_parsing

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    def test_parsing(self):

        filename = make_temp_dir('config_test.hdf5')
        env = Environment(filename=filename, config=self.parser)

        traj = env.v_traj
        self.assertTrue(traj.v_auto_load)
        self.assertEqual(traj.v_storage_service.filename, filename)

        self.assertEqual(traj.x, 42)
        self.assertEqual(traj.f_get('y').v_comment, 'This is the second variable')
        self.assertTrue(traj.testconfig)

        self.assertTrue(env._logging_manager.log_config is not None)
        self.assertTrue(env._logging_manager._sp_config is not None)

        env.f_disable_logging()
開發者ID:SmokinCaterpillar,項目名稱:pypet,代碼行數:19,代碼來源:configparse_test.py

示例6: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
    filename = os.path.join('hdf5', 'FiringRate.hdf5')
    env = Environment(trajectory='FiringRatePipeline',
                      comment='Experiment to measure the firing rate '
                            'of a leaky integrate and fire neuron. '
                            'Exploring different input currents, '
                            'as well as refractory periods',
                      add_time=False, # We don't want to add the current time to the name,
                      log_stdout=True,
                      multiproc=True,
                      ncores=2, #My laptop has 2 cores ;-)
                      filename=filename,
                      overwrite_file=True)

    env.f_pipeline(mypipeline)

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:20,代碼來源:pipeline.py

示例7: test_overwrite_annotations_and_results

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    def test_overwrite_annotations_and_results(self):

        filename = make_temp_dir('overwrite.hdf5')

        env = Environment(trajectory='testoverwrite', filename=filename,
                          log_config=get_log_config())

        traj = env.v_traj

        traj.f_add_parameter('grp.x', 5, comment='hi')
        traj.grp.v_comment='hi'
        traj.grp.v_annotations['a'] = 'b'

        traj.f_store()

        traj.f_remove_child('parameters', recursive=True)

        traj.f_load(load_data=2)

        self.assertTrue(traj.x == 5)
        self.assertTrue(traj.grp.v_comment == 'hi')
        self.assertTrue(traj.grp.v_annotations['a'] == 'b')

        traj.f_get('x').f_unlock()
        traj.grp.x = 22
        traj.f_get('x').v_comment='hu'
        traj.grp.v_annotations['a'] = 'c'
        traj.grp.v_comment = 'hu'

        traj.f_store_item(traj.f_get('x'), store_data=3)
        traj.f_store_item(traj.grp, store_data=3)

        traj.f_remove_child('parameters', recursive=True)

        traj.f_load(load_data=2)

        self.assertTrue(traj.x == 22)
        self.assertTrue(traj.grp.v_comment == 'hu')
        self.assertTrue(traj.grp.v_annotations['a'] == 'c')

        env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:43,代碼來源:storage_test.py

示例8: test_throw_warning_if_old_kw_is_used

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    def test_throw_warning_if_old_kw_is_used(self):
        pass

        filename = make_temp_dir('hdfwarning.hdf5')

        with warnings.catch_warnings(record=True) as w:

            env = Environment(trajectory='test', filename=filename,
                              dynamically_imported_classes=[],
                              log_config=get_log_config())

        with warnings.catch_warnings(record=True) as w:
            traj = Trajectory(dynamically_imported_classes=[])

        traj = env.v_trajectory
        traj.f_store()

        with warnings.catch_warnings(record=True) as w:
            traj.f_load(dynamically_imported_classes=[])

        env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:23,代碼來源:storage_test.py

示例9: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
    """Main function to protect the *entry point* of the program.

    If you want to use multiprocessing under Windows you need to wrap your
    main code creating an environment into a function. Otherwise
    the newly started child processes will re-execute the code and throw
    errors (also see https://docs.python.org/2/library/multiprocessing.html#windows).

    """

    # Create an environment that handles running.
    # Let's enable multiprocessing with 2 workers.
    filename = os.path.join('hdf5', 'example_04.hdf5')
    env = Environment(trajectory='Example_04_MP',
                      filename=filename,
                      file_title='Example_04_MP',
                      log_stdout=True,
                      comment='Multiprocessing example!',
                      multiproc=True,
                      ncores=4,
                      use_pool=True,  # Our runs are inexpensive we can get rid of overhead
                      # by using a pool
                      wrap_mode=pypetconstants.WRAP_MODE_QUEUE)

    # Get the trajectory from the environment
    traj = env.v_trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1.0, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1.0, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product, but we want to explore a bit more
    traj.f_explore(cartesian_product({'x':[float(x) for x in range(20)],
                                      'y':[float(y) for y in range(12)]}))

    # Run the simulation
    env.f_run(multiply)

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:42,代碼來源:example_04_multiprocessing.py

示例10: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
    # Create an environment that handles running
    filename = os.path.join('hdf5', 'example_12.hdf5')
    env = Environment(trajectory='Multiplication',
                      filename=filename,
                      file_title='Example_12_Sharing_Data',
                      comment='The first example!',
                      continuable=False, # We have shared data in terms of a multiprocessing list,
                      # so we CANNOT use the continue feature.
                      multiproc=True,
                      ncores=2)

    # The environment has created a trajectory container for us
    traj = env.v_trajectory

    # Add both parameters
    traj.f_add_parameter('x', 1, comment='I am the first dimension!')
    traj.f_add_parameter('y', 1, comment='I am the second dimension!')

    # Explore the parameters with a cartesian product
    traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))

    # We want a shared list where we can put all out results in. We use a manager for this:
    result_list = mp.Manager().list()
    # Let's make some space for potential results
    result_list[:] =[0 for _dummy in range(len(traj))]

    # Run the simulation
    env.f_run(multiply, result_list)

    # Now we want to store the final list as numpy array
    traj.f_add_result('z', np.array(result_list))

    # Finally let's print the result to see that it worked
    print(traj.z)

    #Disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:40,代碼來源:example_12_sharing_data_between_processes.py

示例11: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():

    filename = os.path.join('hdf5', 'Clustered_Network.hdf5')
    # If we pass a filename to the trajectory a new HDF5StorageService will
    # be automatically created
    traj = Trajectory(filename=filename,
                    dynamically_imported_classes=[BrianDurationParameter,
                                                  BrianMonitorResult,
                                                  BrianParameter])

    # Let's create and fake environment to enable logging:
    env = Environment(traj, do_single_runs=False)


    # Load the trajectory, but onyl laod the skeleton of the results
    traj.f_load(index=-1, load_parameters=2, load_derived_parameters=2, load_results=1)

    # Find the result instances related to the fano factor
    fano_dict = traj.f_get_from_runs('mean_fano_factor', fast_access=False)

    # Load the data of the fano factor results
    ffs = fano_dict.values()
    traj.f_load_items(ffs)

    # Extract all values and R_ee values for each run
    ffs_values = [x.f_get() for x in ffs]
    Rees = traj.f_get('R_ee').f_get_range()

    # Plot average fano factor as a function of R_ee
    plt.plot(Rees, ffs_values)
    plt.xlabel('R_ee')
    plt.ylabel('Avg. Fano Factor')
    plt.show()

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:38,代碼來源:plotff.py

示例12: LoggingTest

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
class LoggingTest(TrajectoryComparator):

    tags = 'integration', 'environment', 'logging'

    def setUp(self):
        root = logging.getLogger()
        for logger in itools.chain(root.manager.loggerDict.values(), [root]):
            if hasattr(logger, 'handlers'):
                for handler in logger.handlers:
                    if hasattr(handler, 'flush'):
                        handler.flush()
                    if hasattr(handler, 'close'):
                        handler.close()
                logger.handlers = []
            if hasattr(logger, 'setLevel'):
                logger.setLevel(logging.NOTSET)
        self.set_mode()

    def tearDown(self):
        super(LoggingTest, self).tearDown()

    def set_mode(self):
        self.mode = Dummy()
        self.mode.wrap_mode = 'LOCK'
        self.mode.multiproc = False
        self.mode.ncores = 1
        self.mode.use_pool=True
        self.mode.pandas_format='fixed'
        self.mode.pandas_append=False
        self.mode.complib = 'blosc'
        self.mode.complevel=9
        self.mode.shuffle=True
        self.mode.fletcher32 = False
        self.mode.encoding = 'utf8'
        self.mode.log_stdout=False
        self.mode.log_config=get_log_config()


    def make_env(self, **kwargs):

        self.mode.__dict__.update(kwargs)
        filename = 'log_testing.hdf5'
        self.filename = make_temp_dir(filename)
        self.traj_name = make_trajectory_name(self)
        self.env = Environment(trajectory=self.traj_name,
                               filename=self.filename, **self.mode.__dict__)
        self.traj = self.env.v_traj


    def add_params(self, traj):

        traj.v_lazy_adding = True
        traj.par.p1 = 42, 'Hey'
        traj.f_apar('g1.p2', 145, comment='Test')


    def explore(self, traj):
        traj.f_explore({'p1': range(7)})

    @unittest.skipIf(platform.system() == 'Windows', 'Log file creation might fail under windows.')
    def test_logfile_creation_normal(self):
        # if not self.multiproc:
        #     return
        self.make_env()
        self.add_params(self.traj)
        self.explore(self.traj)

        self.env.f_run(log_wo_error_levels)
        self.env.f_disable_logging()

        traj = self.env.v_traj

        log_path = get_log_path(traj)

        if self.mode.multiproc:
            if self.mode.use_pool:
                length = self.mode.ncores * 2
            else:
                length = 2 * len(traj)
            if self.mode.wrap_mode == 'LOCK':
                length += 2
            elif self.mode.wrap_mode == 'QUEUE':
                length += 4
            else:
                raise RuntimeError('You shall not pass!')
        else:
            length = 2


        file_list = [file for file in os.listdir(log_path)]

        self.assertEqual(len(file_list), length) # assert that there are as many
        # files as runs plus main.txt and errors and warnings
        total_error_count = 0
        total_store_count = 0
        total_info_count = 0
        total_retry_count = 0
        for file in file_list:
            with open(os.path.join(log_path, file), mode='r') as fh:
                text = fh.read()
#.........這裏部分代碼省略.........
開發者ID:MehmetTimur,項目名稱:pypet,代碼行數:103,代碼來源:logging_test.py

示例13: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():

    filename = os.path.join('hdf5', 'example_06.hdf5')
    env = Environment(trajectory='Example_06_Euler_Integration',
                      filename=filename,
                      file_title='Example_06_Euler_Integration',
                      comment = 'Go for Euler!')


    traj = env.v_trajectory

    # 1st a) phase parameter addition
    # Remember we have some control flow in the `add_parameters` function, the default parameter
    # set we choose is the `'diff_lorenz'` one, but we want to deviate from that and use the
    # `'diff_roessler'`.
    # In order to do that we can preset the corresponding name parameter to change the
    # control flow:
    traj.f_preset_parameter('diff_name', 'diff_roessler') # If you erase this line, you will get
                                                          # again the lorenz attractor
    add_parameters(traj)

    # 1st b) phase preparation
    # Let's check which function we want to use
    if traj.diff_name=='diff_lorenz':
        diff_eq = diff_lorenz
    elif traj.diff_name=='diff_roessler':
        diff_eq = diff_roessler
    else:
        raise ValueError('I don\'t know what %s is.' % traj.diff_name)
    # And add the source code of the function as a derived parameter.
    traj.f_add_derived_parameter(FunctionParameter, 'diff_eq', diff_eq,
                                     comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for now

    # 2nd phase let's run the experiment
    # We pass 'euler_scheme' as our top-level simulation function and
    # the Roessler function as an additional argument
    env.f_run(euler_scheme, diff_eq)

    # Again no post-processing

    # 4th phase analysis.
    # I would recommend to do the analysis completely independent from the simulation
    # but for simplicity let's do it here.
    # We won't reload the trajectory this time but simply update the skeleton
    traj.f_load_skeleton()

    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions.
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        # Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once, but for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        # Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:88,代碼來源:example_06_parameter_presetting.py

示例14: main

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():

    filename = os.path.join('hdf5', 'example_05.hdf5')
    env = Environment(trajectory='Example_05_Euler_Integration',
                      filename=filename,
                      file_title='Example_05_Euler_Integration',
                      comment='Go for Euler!')


    traj = env.v_trajectory
    trajectory_name = traj.v_name

    # 1st a) phase parameter addition
    add_parameters(traj)

    # 1st b) phase preparation
    # We will add the differential equation (well, its source code only) as a derived parameter
    traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
                                 comment='Source code of our equation!')

    # We want to explore some initial conditions
    traj.f_explore({'initial_conditions' : [
        np.array([0.01,0.01,0.01]),
        np.array([2.02,0.02,0.02]),
        np.array([42.0,4.2,0.42])
    ]})
    # 3 different conditions are enough for an illustrative example

    # 2nd phase let's run the experiment
    # We pass `euler_scheme` as our top-level simulation function and
    # the Lorenz equation 'diff_lorenz' as an additional argument
    env.f_run(euler_scheme, diff_lorenz)

    # We don't have a 3rd phase of post-processing here

    # 4th phase analysis.
    # I would recommend to do post-processing completely independent from the simulation,
    # but for simplicity let's do it here.

    # Let's assume that we start all over again and load the entire trajectory new.
    # Yet, there is an error within this approach, do you spot it?
    del traj
    traj = Trajectory(filename=filename)

    # We will only fully load parameters and derived parameters.
    # Results will be loaded manually later on.
    try:
        # However, this will fail because our trajectory does not know how to
        # build the FunctionParameter. You have seen this coming, right?
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)
    except ImportError as e:

        print('That did\'nt work, I am sorry: %s ' % str(e))

        # Ok, let's try again but this time with adding our parameter to the imports
        traj = Trajectory(filename=filename,
                           dynamically_imported_classes=FunctionParameter)

        # Now it works:
        traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
                    load_results=1)


    #For the fun of it, let's print the source code
    print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)

    # Let's get the exploration array:
    initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
    # Now let's plot our simulated equations for the different initial conditions:
    # We will iterate through the run names
    for idx, run_name in enumerate(traj.f_get_run_names()):

        #Get the result of run idx from the trajectory
        euler_result = traj.results.f_get(run_name).euler_evolution
        # Now we manually need to load the result. Actually the results are not so large and we
        # could load them all at once. But for demonstration we do as if they were huge:
        traj.f_load_item(euler_result)
        euler_data = euler_result.data

        #Plot fancy 3d plot
        fig = plt.figure(idx)
        ax = fig.gca(projection='3d')
        x = euler_data[:,0]
        y = euler_data[:,1]
        z = euler_data[:,2]
        ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
        plt.legend()
        plt.show()

        # Now we free the data again (because we assume its huuuuuuge):
        del euler_data
        euler_result.f_empty()

    # You have to click through the images to stop the example_05 module!

    # Finally disable logging and close all log-files
    env.f_disable_logging()
開發者ID:henribunting,項目名稱:pypet,代碼行數:100,代碼來源:example_05_custom_parameter.py

示例15: Environment

# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
    traj.f_add_result('positions', sim.positions, comment='End positions of particles')
    traj.f_add_result('t', sim.t, comment='duration of flight')

env = Environment(trajectory='FanSimulation', filename='./pypet/',
                  large_overview_tables=True,
                  add_time=True,
                  multiproc=False,
                  ncores=6,
                  log_config='DEFAULT')

traj = env.v_trajectory

add_parameters(traj, dt=1e-2)

explore_dict = {'vent_radius':[0.1, 0.5, 1.0],
                'vmax':[10, 50, 100],
                'incline':[0.1, 1.0, 5.0]}

to_explore = cartesian_product(explore_dict)
traj.f_explore(to_explore)

env.f_run(run_simulation)

env.f_disable_logging()


# In[ ]:



開發者ID:michaelaye,項目名稱:planet4,代碼行數:29,代碼來源:2016-02-14+VPython+ballistic.py


注:本文中的pypet.Environment.f_disable_logging方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。