本文整理匯總了Python中pypet.Environment.f_disable_logging方法的典型用法代碼示例。如果您正苦於以下問題:Python Environment.f_disable_logging方法的具體用法?Python Environment.f_disable_logging怎麽用?Python Environment.f_disable_logging使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pypet.Environment
的用法示例。
在下文中一共展示了Environment.f_disable_logging方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_logging_stdout
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def test_logging_stdout(self):
filename = 'teststdoutlog.hdf5'
filename = make_temp_dir(filename)
folder = make_temp_dir('logs')
env = Environment(trajectory=make_trajectory_name(self),
filename=filename, log_config=get_log_config(),
# log_levels=logging.CRITICAL, # needed for the test
log_stdout=('STDOUT', 50), #log_folder=folder
)
env.f_run(log_error)
traj = env.v_traj
path = get_log_path(traj)
mainstr = 'sTdOuTLoGGinG'
print(mainstr)
env.f_disable_logging()
mainfilename = os.path.join(path, 'LOG.txt')
with open(mainfilename, mode='r') as mainf:
full_text = mainf.read()
self.assertTrue(mainstr in full_text)
self.assertTrue('4444444' not in full_text)
self.assertTrue('DEBUG' not in full_text)
示例2: test_maximum_overview_size
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def test_maximum_overview_size(self):
filename = make_temp_dir('maxisze.hdf5')
env = Environment(trajectory='Testmigrate', filename=filename,
log_config=get_log_config())
traj = env.v_trajectory
for irun in range(pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH):
traj.f_add_parameter('f%d.x' % irun, 5)
traj.f_store()
store = ptcompat.open_file(filename, mode='r+')
table = ptcompat.get_child(store.root,traj.v_name).overview.parameters_overview
self.assertEquals(table.nrows, pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH)
store.close()
for irun in range(pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH,
2*pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH):
traj.f_add_parameter('f%d.x' % irun, 5)
traj.f_store()
store = ptcompat.open_file(filename, mode='r+')
table = ptcompat.get_child(store.root,traj.v_name).overview.parameters_overview
self.assertEquals(table.nrows, pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH)
store.close()
env.f_disable_logging()
示例3: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
filename = os.path.join('hdf5', 'FiringRate.hdf5')
env = Environment(trajectory='FiringRate',
comment='Experiment to measure the firing rate '
'of a leaky integrate and fire neuron. '
'Exploring different input currents, '
'as well as refractory periods',
add_time=False, # We don't want to add the current time to the name,
log_stdout=True,
log_config='DEFAULT',
multiproc=True,
ncores=2, #My laptop has 2 cores ;-)
wrap_mode='QUEUE',
filename=filename,
overwrite_file=True)
traj = env.v_trajectory
# Add parameters
add_parameters(traj)
# Let's explore
add_exploration(traj)
# Ad the postprocessing function
env.f_add_postprocessing(neuron_postproc)
# Run the experiment
env.f_run(run_neuron)
# Finally disable logging and close all log-files
env.f_disable_logging()
示例4: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
""" Main *boilerplate* function to start simulation """
# Now let's make use of logging
logger = logging.getLogger()
# Create folders for data and plots
folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_pypet')
if not os.path.isdir(folder):
os.makedirs(folder)
filename = os.path.join(folder, 'all_patterns.hdf5')
# Create an environment
env = Environment(trajectory='cellular_automata',
multiproc=True,
ncores=4,
wrap_mode='QUEUE',
filename=filename,
overwrite_file=True)
# extract the trajectory
traj = env.v_traj
traj.v_lazy_adding = True
traj.par.ncells = 400, 'Number of cells'
traj.par.steps = 250, 'Number of timesteps'
traj.par.rule_number = 30, 'The ca rule'
traj.par.initial_name = 'random', 'The type of initial state'
traj.par.seed = 100042, 'RNG Seed'
# Explore
exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
'initial_name' : ['single', 'random'],}
# # You can uncomment the ``exp_dict`` below to see that changing the
# # exploration scheme is now really easy:
# exp_dict = {'rule_number' : [10, 30, 90, 110, 184],
# 'ncells' : [100, 200, 300],
# 'seed': [333444555, 123456]}
exp_dict = cartesian_product(exp_dict)
traj.f_explore(exp_dict)
# Run the simulation
logger.info('Starting Simulation')
env.f_run(wrap_automaton)
# Load all data
traj.f_load(load_data=2)
logger.info('Printing data')
for idx, run_name in enumerate(traj.f_iter_runs()):
# Plot all patterns
filename = os.path.join(folder, make_filename(traj))
plot_pattern(traj.crun.pattern, traj.rule_number, filename)
progressbar(idx, len(traj), logger=logger)
# Finally disable logging and close all log-files
env.f_disable_logging()
示例5: test_parsing
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def test_parsing(self):
filename = make_temp_dir('config_test.hdf5')
env = Environment(filename=filename, config=self.parser)
traj = env.v_traj
self.assertTrue(traj.v_auto_load)
self.assertEqual(traj.v_storage_service.filename, filename)
self.assertEqual(traj.x, 42)
self.assertEqual(traj.f_get('y').v_comment, 'This is the second variable')
self.assertTrue(traj.testconfig)
self.assertTrue(env._logging_manager.log_config is not None)
self.assertTrue(env._logging_manager._sp_config is not None)
env.f_disable_logging()
示例6: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
filename = os.path.join('hdf5', 'FiringRate.hdf5')
env = Environment(trajectory='FiringRatePipeline',
comment='Experiment to measure the firing rate '
'of a leaky integrate and fire neuron. '
'Exploring different input currents, '
'as well as refractory periods',
add_time=False, # We don't want to add the current time to the name,
log_stdout=True,
multiproc=True,
ncores=2, #My laptop has 2 cores ;-)
filename=filename,
overwrite_file=True)
env.f_pipeline(mypipeline)
# Finally disable logging and close all log-files
env.f_disable_logging()
示例7: test_overwrite_annotations_and_results
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def test_overwrite_annotations_and_results(self):
filename = make_temp_dir('overwrite.hdf5')
env = Environment(trajectory='testoverwrite', filename=filename,
log_config=get_log_config())
traj = env.v_traj
traj.f_add_parameter('grp.x', 5, comment='hi')
traj.grp.v_comment='hi'
traj.grp.v_annotations['a'] = 'b'
traj.f_store()
traj.f_remove_child('parameters', recursive=True)
traj.f_load(load_data=2)
self.assertTrue(traj.x == 5)
self.assertTrue(traj.grp.v_comment == 'hi')
self.assertTrue(traj.grp.v_annotations['a'] == 'b')
traj.f_get('x').f_unlock()
traj.grp.x = 22
traj.f_get('x').v_comment='hu'
traj.grp.v_annotations['a'] = 'c'
traj.grp.v_comment = 'hu'
traj.f_store_item(traj.f_get('x'), store_data=3)
traj.f_store_item(traj.grp, store_data=3)
traj.f_remove_child('parameters', recursive=True)
traj.f_load(load_data=2)
self.assertTrue(traj.x == 22)
self.assertTrue(traj.grp.v_comment == 'hu')
self.assertTrue(traj.grp.v_annotations['a'] == 'c')
env.f_disable_logging()
示例8: test_throw_warning_if_old_kw_is_used
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def test_throw_warning_if_old_kw_is_used(self):
pass
filename = make_temp_dir('hdfwarning.hdf5')
with warnings.catch_warnings(record=True) as w:
env = Environment(trajectory='test', filename=filename,
dynamically_imported_classes=[],
log_config=get_log_config())
with warnings.catch_warnings(record=True) as w:
traj = Trajectory(dynamically_imported_classes=[])
traj = env.v_trajectory
traj.f_store()
with warnings.catch_warnings(record=True) as w:
traj.f_load(dynamically_imported_classes=[])
env.f_disable_logging()
示例9: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
"""Main function to protect the *entry point* of the program.
If you want to use multiprocessing under Windows you need to wrap your
main code creating an environment into a function. Otherwise
the newly started child processes will re-execute the code and throw
errors (also see https://docs.python.org/2/library/multiprocessing.html#windows).
"""
# Create an environment that handles running.
# Let's enable multiprocessing with 2 workers.
filename = os.path.join('hdf5', 'example_04.hdf5')
env = Environment(trajectory='Example_04_MP',
filename=filename,
file_title='Example_04_MP',
log_stdout=True,
comment='Multiprocessing example!',
multiproc=True,
ncores=4,
use_pool=True, # Our runs are inexpensive we can get rid of overhead
# by using a pool
wrap_mode=pypetconstants.WRAP_MODE_QUEUE)
# Get the trajectory from the environment
traj = env.v_trajectory
# Add both parameters
traj.f_add_parameter('x', 1.0, comment='I am the first dimension!')
traj.f_add_parameter('y', 1.0, comment='I am the second dimension!')
# Explore the parameters with a cartesian product, but we want to explore a bit more
traj.f_explore(cartesian_product({'x':[float(x) for x in range(20)],
'y':[float(y) for y in range(12)]}))
# Run the simulation
env.f_run(multiply)
# Finally disable logging and close all log-files
env.f_disable_logging()
示例10: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
# Create an environment that handles running
filename = os.path.join('hdf5', 'example_12.hdf5')
env = Environment(trajectory='Multiplication',
filename=filename,
file_title='Example_12_Sharing_Data',
comment='The first example!',
continuable=False, # We have shared data in terms of a multiprocessing list,
# so we CANNOT use the continue feature.
multiproc=True,
ncores=2)
# The environment has created a trajectory container for us
traj = env.v_trajectory
# Add both parameters
traj.f_add_parameter('x', 1, comment='I am the first dimension!')
traj.f_add_parameter('y', 1, comment='I am the second dimension!')
# Explore the parameters with a cartesian product
traj.f_explore(cartesian_product({'x':[1,2,3,4], 'y':[6,7,8]}))
# We want a shared list where we can put all out results in. We use a manager for this:
result_list = mp.Manager().list()
# Let's make some space for potential results
result_list[:] =[0 for _dummy in range(len(traj))]
# Run the simulation
env.f_run(multiply, result_list)
# Now we want to store the final list as numpy array
traj.f_add_result('z', np.array(result_list))
# Finally let's print the result to see that it worked
print(traj.z)
#Disable logging and close all log-files
env.f_disable_logging()
示例11: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
filename = os.path.join('hdf5', 'Clustered_Network.hdf5')
# If we pass a filename to the trajectory a new HDF5StorageService will
# be automatically created
traj = Trajectory(filename=filename,
dynamically_imported_classes=[BrianDurationParameter,
BrianMonitorResult,
BrianParameter])
# Let's create and fake environment to enable logging:
env = Environment(traj, do_single_runs=False)
# Load the trajectory, but onyl laod the skeleton of the results
traj.f_load(index=-1, load_parameters=2, load_derived_parameters=2, load_results=1)
# Find the result instances related to the fano factor
fano_dict = traj.f_get_from_runs('mean_fano_factor', fast_access=False)
# Load the data of the fano factor results
ffs = fano_dict.values()
traj.f_load_items(ffs)
# Extract all values and R_ee values for each run
ffs_values = [x.f_get() for x in ffs]
Rees = traj.f_get('R_ee').f_get_range()
# Plot average fano factor as a function of R_ee
plt.plot(Rees, ffs_values)
plt.xlabel('R_ee')
plt.ylabel('Avg. Fano Factor')
plt.show()
# Finally disable logging and close all log-files
env.f_disable_logging()
示例12: LoggingTest
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
class LoggingTest(TrajectoryComparator):
tags = 'integration', 'environment', 'logging'
def setUp(self):
root = logging.getLogger()
for logger in itools.chain(root.manager.loggerDict.values(), [root]):
if hasattr(logger, 'handlers'):
for handler in logger.handlers:
if hasattr(handler, 'flush'):
handler.flush()
if hasattr(handler, 'close'):
handler.close()
logger.handlers = []
if hasattr(logger, 'setLevel'):
logger.setLevel(logging.NOTSET)
self.set_mode()
def tearDown(self):
super(LoggingTest, self).tearDown()
def set_mode(self):
self.mode = Dummy()
self.mode.wrap_mode = 'LOCK'
self.mode.multiproc = False
self.mode.ncores = 1
self.mode.use_pool=True
self.mode.pandas_format='fixed'
self.mode.pandas_append=False
self.mode.complib = 'blosc'
self.mode.complevel=9
self.mode.shuffle=True
self.mode.fletcher32 = False
self.mode.encoding = 'utf8'
self.mode.log_stdout=False
self.mode.log_config=get_log_config()
def make_env(self, **kwargs):
self.mode.__dict__.update(kwargs)
filename = 'log_testing.hdf5'
self.filename = make_temp_dir(filename)
self.traj_name = make_trajectory_name(self)
self.env = Environment(trajectory=self.traj_name,
filename=self.filename, **self.mode.__dict__)
self.traj = self.env.v_traj
def add_params(self, traj):
traj.v_lazy_adding = True
traj.par.p1 = 42, 'Hey'
traj.f_apar('g1.p2', 145, comment='Test')
def explore(self, traj):
traj.f_explore({'p1': range(7)})
@unittest.skipIf(platform.system() == 'Windows', 'Log file creation might fail under windows.')
def test_logfile_creation_normal(self):
# if not self.multiproc:
# return
self.make_env()
self.add_params(self.traj)
self.explore(self.traj)
self.env.f_run(log_wo_error_levels)
self.env.f_disable_logging()
traj = self.env.v_traj
log_path = get_log_path(traj)
if self.mode.multiproc:
if self.mode.use_pool:
length = self.mode.ncores * 2
else:
length = 2 * len(traj)
if self.mode.wrap_mode == 'LOCK':
length += 2
elif self.mode.wrap_mode == 'QUEUE':
length += 4
else:
raise RuntimeError('You shall not pass!')
else:
length = 2
file_list = [file for file in os.listdir(log_path)]
self.assertEqual(len(file_list), length) # assert that there are as many
# files as runs plus main.txt and errors and warnings
total_error_count = 0
total_store_count = 0
total_info_count = 0
total_retry_count = 0
for file in file_list:
with open(os.path.join(log_path, file), mode='r') as fh:
text = fh.read()
#.........這裏部分代碼省略.........
示例13: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
filename = os.path.join('hdf5', 'example_06.hdf5')
env = Environment(trajectory='Example_06_Euler_Integration',
filename=filename,
file_title='Example_06_Euler_Integration',
comment = 'Go for Euler!')
traj = env.v_trajectory
# 1st a) phase parameter addition
# Remember we have some control flow in the `add_parameters` function, the default parameter
# set we choose is the `'diff_lorenz'` one, but we want to deviate from that and use the
# `'diff_roessler'`.
# In order to do that we can preset the corresponding name parameter to change the
# control flow:
traj.f_preset_parameter('diff_name', 'diff_roessler') # If you erase this line, you will get
# again the lorenz attractor
add_parameters(traj)
# 1st b) phase preparation
# Let's check which function we want to use
if traj.diff_name=='diff_lorenz':
diff_eq = diff_lorenz
elif traj.diff_name=='diff_roessler':
diff_eq = diff_roessler
else:
raise ValueError('I don\'t know what %s is.' % traj.diff_name)
# And add the source code of the function as a derived parameter.
traj.f_add_derived_parameter(FunctionParameter, 'diff_eq', diff_eq,
comment='Source code of our equation!')
# We want to explore some initial conditions
traj.f_explore({'initial_conditions' : [
np.array([0.01,0.01,0.01]),
np.array([2.02,0.02,0.02]),
np.array([42.0,4.2,0.42])
]})
# 3 different conditions are enough for now
# 2nd phase let's run the experiment
# We pass 'euler_scheme' as our top-level simulation function and
# the Roessler function as an additional argument
env.f_run(euler_scheme, diff_eq)
# Again no post-processing
# 4th phase analysis.
# I would recommend to do the analysis completely independent from the simulation
# but for simplicity let's do it here.
# We won't reload the trajectory this time but simply update the skeleton
traj.f_load_skeleton()
#For the fun of it, let's print the source code
print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)
# Let's get the exploration array:
initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
# Now let's plot our simulated equations for the different initial conditions.
# We will iterate through the run names
for idx, run_name in enumerate(traj.f_get_run_names()):
# Get the result of run idx from the trajectory
euler_result = traj.results.f_get(run_name).euler_evolution
# Now we manually need to load the result. Actually the results are not so large and we
# could load them all at once, but for demonstration we do as if they were huge:
traj.f_load_item(euler_result)
euler_data = euler_result.data
# Plot fancy 3d plot
fig = plt.figure(idx)
ax = fig.gca(projection='3d')
x = euler_data[:,0]
y = euler_data[:,1]
z = euler_data[:,2]
ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
plt.legend()
plt.show()
# Now we free the data again (because we assume its huuuuuuge):
del euler_data
euler_result.f_empty()
# Finally disable logging and close all log-files
env.f_disable_logging()
示例14: main
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
def main():
filename = os.path.join('hdf5', 'example_05.hdf5')
env = Environment(trajectory='Example_05_Euler_Integration',
filename=filename,
file_title='Example_05_Euler_Integration',
comment='Go for Euler!')
traj = env.v_trajectory
trajectory_name = traj.v_name
# 1st a) phase parameter addition
add_parameters(traj)
# 1st b) phase preparation
# We will add the differential equation (well, its source code only) as a derived parameter
traj.f_add_derived_parameter(FunctionParameter,'diff_eq', diff_lorenz,
comment='Source code of our equation!')
# We want to explore some initial conditions
traj.f_explore({'initial_conditions' : [
np.array([0.01,0.01,0.01]),
np.array([2.02,0.02,0.02]),
np.array([42.0,4.2,0.42])
]})
# 3 different conditions are enough for an illustrative example
# 2nd phase let's run the experiment
# We pass `euler_scheme` as our top-level simulation function and
# the Lorenz equation 'diff_lorenz' as an additional argument
env.f_run(euler_scheme, diff_lorenz)
# We don't have a 3rd phase of post-processing here
# 4th phase analysis.
# I would recommend to do post-processing completely independent from the simulation,
# but for simplicity let's do it here.
# Let's assume that we start all over again and load the entire trajectory new.
# Yet, there is an error within this approach, do you spot it?
del traj
traj = Trajectory(filename=filename)
# We will only fully load parameters and derived parameters.
# Results will be loaded manually later on.
try:
# However, this will fail because our trajectory does not know how to
# build the FunctionParameter. You have seen this coming, right?
traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
load_results=1)
except ImportError as e:
print('That did\'nt work, I am sorry: %s ' % str(e))
# Ok, let's try again but this time with adding our parameter to the imports
traj = Trajectory(filename=filename,
dynamically_imported_classes=FunctionParameter)
# Now it works:
traj.f_load(name=trajectory_name, load_parameters=2, load_derived_parameters=2,
load_results=1)
#For the fun of it, let's print the source code
print('\n ---------- The source code of your function ---------- \n %s' % traj.diff_eq)
# Let's get the exploration array:
initial_conditions_exploration_array = traj.f_get('initial_conditions').f_get_range()
# Now let's plot our simulated equations for the different initial conditions:
# We will iterate through the run names
for idx, run_name in enumerate(traj.f_get_run_names()):
#Get the result of run idx from the trajectory
euler_result = traj.results.f_get(run_name).euler_evolution
# Now we manually need to load the result. Actually the results are not so large and we
# could load them all at once. But for demonstration we do as if they were huge:
traj.f_load_item(euler_result)
euler_data = euler_result.data
#Plot fancy 3d plot
fig = plt.figure(idx)
ax = fig.gca(projection='3d')
x = euler_data[:,0]
y = euler_data[:,1]
z = euler_data[:,2]
ax.plot(x, y, z, label='Initial Conditions: %s' % str(initial_conditions_exploration_array[idx]))
plt.legend()
plt.show()
# Now we free the data again (because we assume its huuuuuuge):
del euler_data
euler_result.f_empty()
# You have to click through the images to stop the example_05 module!
# Finally disable logging and close all log-files
env.f_disable_logging()
示例15: Environment
# 需要導入模塊: from pypet import Environment [as 別名]
# 或者: from pypet.Environment import f_disable_logging [as 別名]
traj.f_add_result('positions', sim.positions, comment='End positions of particles')
traj.f_add_result('t', sim.t, comment='duration of flight')
env = Environment(trajectory='FanSimulation', filename='./pypet/',
large_overview_tables=True,
add_time=True,
multiproc=False,
ncores=6,
log_config='DEFAULT')
traj = env.v_trajectory
add_parameters(traj, dt=1e-2)
explore_dict = {'vent_radius':[0.1, 0.5, 1.0],
'vmax':[10, 50, 100],
'incline':[0.1, 1.0, 5.0]}
to_explore = cartesian_product(explore_dict)
traj.f_explore(to_explore)
env.f_run(run_simulation)
env.f_disable_logging()
# In[ ]: