當前位置: 首頁>>代碼示例>>Python>>正文


Python BatchGradientDescent._compute_grad方法代碼示例

本文整理匯總了Python中pylearn2.optimization.batch_gradient_descent.BatchGradientDescent._compute_grad方法的典型用法代碼示例。如果您正苦於以下問題:Python BatchGradientDescent._compute_grad方法的具體用法?Python BatchGradientDescent._compute_grad怎麽用?Python BatchGradientDescent._compute_grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylearn2.optimization.batch_gradient_descent.BatchGradientDescent的用法示例。


在下文中一共展示了BatchGradientDescent._compute_grad方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_batch_gradient_descent

# 需要導入模塊: from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent [as 別名]
# 或者: from pylearn2.optimization.batch_gradient_descent.BatchGradientDescent import _compute_grad [as 別名]
def test_batch_gradient_descent():
        """ Verify that batch gradient descent works by checking that
        it minimizes a quadratic function f(x) = x^T A x + b^T x + c
        correctly for several sampled values of A, b, and c.
        The ground truth minimizer is x = np.linalg.solve(A,-b)"""

        n = 3

        A = T.matrix(name = 'A')
        b = T.vector(name = 'b')
        c = T.scalar(name = 'c')

        x = sharedX( np.zeros((n,)) , name = 'x')

        half = np.cast[config.floatX](0.5)

        obj = half * T.dot(T.dot(x,A),x)+T.dot(b,x)+c

        minimizer = BatchGradientDescent(
                        objective = obj,
                        params = [ x],
                        inputs = [ A, b, c])

        num_samples = 3

        rng = np.random.RandomState([1,2,3])

        for i in xrange(num_samples):
            A = np.cast[config.floatX](rng.randn(1.5*n,n))
            A = np.cast[config.floatX](np.dot(A.T,A))
            A += np.cast[config.floatX](np.identity(n) * .02)
            b = np.cast[config.floatX](rng.randn(n))
            c = np.cast[config.floatX](rng.randn())
            x.set_value(np.cast[config.floatX](rng.randn(n)))

            analytical_x = np.linalg.solve(A,-b)

            actual_obj = minimizer.minimize(A,b,c)
            actual_x = x.get_value()

            #Check that the value returned by the minimize method
            #is the objective function value at the parameters
            #chosen by the minimize method
            cur_obj = minimizer.obj(A,b,c)
            assert np.allclose(actual_obj, cur_obj)

            x.set_value(analytical_x)
            analytical_obj = minimizer.obj(A,b,c)

            #make sure the objective function is accurate to first 4 digits
            condition1 = not np.allclose(analytical_obj, actual_obj)
            condition2 = np.abs(analytical_obj-actual_obj) >= 1e-4 * np.abs(analytical_obj)

            if (config.floatX == 'float64' and condition1) \
                    or (config.floatX == 'float32' and condition2):
                print 'objective function value came out wrong on sample ',i
                print 'analytical obj', analytical_obj
                print 'actual obj',actual_obj

                """
                The following section of code was used to verify that numerical
                error can make the objective function look non-convex

                print 'Checking for numerically induced non-convex behavior'
                def f(x):
                    return 0.5 * np.dot(x,np.dot(A,x)) + np.dot(b,x) + c

                x.set_value(actual_x)
                minimizer._compute_grad(A,b,c)
                minimizer._normalize_grad()
                d = minimizer.param_to_grad_shared[x].get_value()

                x = actual_x.copy()
                prev = f(x)
                print prev
                step_size = 1e-4
                x += step_size * d
                cur = f(x)
                print cur
                cur_sgn = np.sign(cur-prev)
                flip_cnt = 0
                for i in xrange(10000):
                    x += step_size * d
                    prev = cur
                    cur = f(x)
                    print cur
                    prev_sgn = cur_sgn
                    cur_sgn = np.sign(cur-prev)
                    if cur_sgn != prev_sgn:
                        print 'flip'
                        flip_cnt += 1
                        if flip_cnt > 1:
                            print "Non-convex!"

                            from matplotlib import pyplot as plt
                            y = []

                            x = actual_x.copy()
                            for j in xrange(10000):
                                y.append(f(x))
#.........這裏部分代碼省略.........
開發者ID:Alienfeel,項目名稱:pylearn2,代碼行數:103,代碼來源:test_batch_gradient_descent.py


注:本文中的pylearn2.optimization.batch_gradient_descent.BatchGradientDescent._compute_grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。