當前位置: 首頁>>代碼示例>>Python>>正文


Python batch_gradient_descent.BatchGradientDescent類代碼示例

本文整理匯總了Python中pylearn2.optimization.batch_gradient_descent.BatchGradientDescent的典型用法代碼示例。如果您正苦於以下問題:Python BatchGradientDescent類的具體用法?Python BatchGradientDescent怎麽用?Python BatchGradientDescent使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了BatchGradientDescent類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_zero_optimal

    def test_zero_optimal(self):
        """ minimizes the kl divergence between q and p
            using batch gradient descent and checks that
            the result is zero"""

        rng = np.random.RandomState([1,2,3])

        dim = self.dim

        num_trials = 3

        mu = rng.randn(dim).astype(floatX)
        beta = rng.uniform(.1,10.,(dim,)).astype(floatX)
        self.p.mu.set_value(mu)
        mu = rng.randn(dim).astype(floatX)
        self.q.mu.set_value(mu)
        self.p.beta.set_value(beta)
        beta = rng.uniform(.1,10.,(dim,)).astype(floatX)
        self.q.beta.set_value(beta)

        kl = kl_divergence(self.q,self.p)

        p = self.p
        q = self.q

        optimizer = BatchGradientDescent(
                    max_iter = 100,
                    line_search_mode = 'exhaustive',
                    verbose = True,
                    objective = kl,
                    conjugate = True,
                    params = [ p.mu, p.beta, q.mu, q.beta ],
                    param_constrainers = [ p.censor_updates,
                        q.censor_updates ])

        #optimizer.verbose = True

        kl = optimizer.minimize()

        if kl < 0.:

            if config.floatX == 'float32':
                neg_tol = 4.8e-7
            else:
                neg_tol = 0.

            if kl < - neg_tol:
                raise AssertionError("KL divergence should "
                    "be non-negative but is "+
                    str(kl))

            warnings.warn("KL divergence is not very numerically stable, evidently")

        tol = 6e-5
        if kl > tol:
            print 'kl:',kl
            print 'tol:',tol
        assert kl <= tol
        assert not (kl > tol )
開發者ID:Alienfeel,項目名稱:pylearn2,代碼行數:59,代碼來源:test_mnd.py

示例2: test_zero_optimal

    def test_zero_optimal(self):
        """ minimizes the kl divergence between q and p
            using batch gradient descent and checks that
            the result is zero"""

        rng = np.random.RandomState([1,2,3])

        dim = self.dim

        num_trials = 3

        mu = rng.randn(dim).astype(floatX)
        beta = rng.uniform(.1,10.,(dim,)).astype(floatX)
        self.p.mu.set_value(mu)
        mu = rng.randn(dim).astype(floatX)
        self.q.mu.set_value(mu)
        self.p.beta.set_value(beta)
        beta = rng.uniform(.1,10.,(dim,)).astype(floatX)
        self.q.beta.set_value(beta)

        kl = kl_divergence(self.q,self.p)

        p = self.p
        q = self.q

        optimizer = BatchGradientDescent(
                    objective = kl,
                    params = [ p.mu, p.beta, q.mu, q.beta ],
                    param_constrainers = [ p.censor_updates,
                        q.censor_updates ])

        #optimizer.verbose = True

        kl = optimizer.minimize()

        if kl < 0.:
            raise AssertionError("KL divergence should "
                    "be non-negative but is "+
                    str(kl))

        tol = 5.4e-5
        assert kl <= tol
        assert not (kl > tol )
開發者ID:wqren,項目名稱:pylearn,代碼行數:43,代碼來源:test_mnd.py

示例3: fit

    def fit(self, params=None, l1=.0, l2=.0):
        """
        Fit the model by minimizing the Leave One Out (LOO) loss using gradient-based optimization.
        """
        loo_loss = self.loss_symbolic(self.L, self.y, self.mu, self.R, self.eta, self.eps)

        if params is None:
            params = [self.eta]

        # Symbolic Theano variables that represent the L1 and L2 regularization terms
        L1, L2 = .0, .0
        for param in params:
            L1 += T.sum(abs(param))
            L2 += T.sum(param ** 2)

        regularized_loo_loss = loo_loss + l1 * L1 + l2 * L2

        minimizer = BatchGradientDescent(objective=regularized_loo_loss, params=params, inputs=[], verbose=1)

        minimizer.minimize()
開發者ID:pminervini,項目名稱:knowledge-propagation,代碼行數:20,代碼來源:model.py

示例4: test_batch_gradient_descent

def test_batch_gradient_descent():
        """ Verify that batch gradient descent works by checking that
        it minimizes a quadratic function f(x) = x^T A x + b^T x + c
        correctly for several sampled values of A, b, and c.
        The ground truth minimizer is x = np.linalg.solve(A,-b)"""

        n = 3

        A = T.matrix(name = 'A')
        b = T.vector(name = 'b')
        c = T.scalar(name = 'c')

        x = sharedX( np.zeros((n,)) , name = 'x')

        half = np.cast[config.floatX](0.5)

        obj = half * T.dot(T.dot(x,A),x)+T.dot(b,x)+c

        minimizer = BatchGradientDescent(
                        objective = obj,
                        params = [ x],
                        inputs = [ A, b, c])

        num_samples = 3

        rng = np.random.RandomState([1,2,3])

        for i in xrange(num_samples):
            A = np.cast[config.floatX](rng.randn(1.5*n,n))
            A = np.cast[config.floatX](np.dot(A.T,A))
            A += np.cast[config.floatX](np.identity(n) * .02)
            b = np.cast[config.floatX](rng.randn(n))
            c = np.cast[config.floatX](rng.randn())
            x.set_value(np.cast[config.floatX](rng.randn(n)))

            analytical_x = np.linalg.solve(A,-b)

            actual_obj = minimizer.minimize(A,b,c)
            actual_x = x.get_value()

            #Check that the value returned by the minimize method
            #is the objective function value at the parameters
            #chosen by the minimize method
            cur_obj = minimizer.obj(A,b,c)
            assert np.allclose(actual_obj, cur_obj)

            x.set_value(analytical_x)
            analytical_obj = minimizer.obj(A,b,c)

            #make sure the objective function is accurate to first 4 digits
            condition1 = not np.allclose(analytical_obj, actual_obj)
            condition2 = np.abs(analytical_obj-actual_obj) >= 1e-4 * np.abs(analytical_obj)

            if (config.floatX == 'float64' and condition1) \
                    or (config.floatX == 'float32' and condition2):
                print 'objective function value came out wrong on sample ',i
                print 'analytical obj', analytical_obj
                print 'actual obj',actual_obj

                """
                The following section of code was used to verify that numerical
                error can make the objective function look non-convex

                print 'Checking for numerically induced non-convex behavior'
                def f(x):
                    return 0.5 * np.dot(x,np.dot(A,x)) + np.dot(b,x) + c

                x.set_value(actual_x)
                minimizer._compute_grad(A,b,c)
                minimizer._normalize_grad()
                d = minimizer.param_to_grad_shared[x].get_value()

                x = actual_x.copy()
                prev = f(x)
                print prev
                step_size = 1e-4
                x += step_size * d
                cur = f(x)
                print cur
                cur_sgn = np.sign(cur-prev)
                flip_cnt = 0
                for i in xrange(10000):
                    x += step_size * d
                    prev = cur
                    cur = f(x)
                    print cur
                    prev_sgn = cur_sgn
                    cur_sgn = np.sign(cur-prev)
                    if cur_sgn != prev_sgn:
                        print 'flip'
                        flip_cnt += 1
                        if flip_cnt > 1:
                            print "Non-convex!"

                            from matplotlib import pyplot as plt
                            y = []

                            x = actual_x.copy()
                            for j in xrange(10000):
                                y.append(f(x))
#.........這裏部分代碼省略.........
開發者ID:Alienfeel,項目名稱:pylearn2,代碼行數:101,代碼來源:test_batch_gradient_descent.py

示例5: DNCE

        #Get the objective function
        nce = DNCE(noise_distribution)
        J = nce(model,X,Y)

        accs = []
        for Y_i in Y:
            pos_prob = 1./(1.+T.exp(model.free_energy(X)-model.free_energy(Y_i)))
            acc = (pos_prob > .5).mean()
            accs.append(acc)
        acc = sum(accs) / float(len(accs))

        print '\tinit accuracy ',function([],acc)()

        #Minimize the objective function with batch gradient descent
        minimizer = BatchGradientDescent( objective = J,
                                            params = model.get_params(),
                                            param_constrainers = [ model.censor_updates ])

        print '\tinit obj:',minimizer.obj()
        #minimizer.verbose = True
        minimizer.minimize()
        print '\tfinal obj:',minimizer.obj()

        recovered_beta = model.beta.get_value()
        recovered_mu = model.mu.get_value()

        print '\trecovered beta:',recovered_beta
        print '\trecovered mu:',recovered_mu

        kl = kl_divergence(true, model)
        kl = function([],kl)()
開發者ID:cc13ny,項目名稱:galatea,代碼行數:31,代碼來源:synth6.py

示例6: setup


#.........這裏部分代碼省略.........
            obj = self.cost(model, X, Y, ** fixed_var_descr.fixed_vars)
            grads, grad_updates = self.cost.get_gradients(model, X, Y, ** fixed_var_descr.fixed_vars)
            ipt = (X,Y)
        else:
            obj = self.cost(model, X, ** fixed_var_descr.fixed_vars)
            grads, grad_updates = self.cost.get_gradients(model, X, ** fixed_var_descr.fixed_vars)
            ipt = X
            Y = None

        assert isinstance(grads, OrderedDict)
        assert isinstance(grad_updates, OrderedDict)


        if obj is None:
            raise ValueError("BGD is incompatible with "+str(self.cost)+" because "
                    " it is intractable, but BGD uses the cost function value to do "
                    " line searches.")

        if self.monitoring_dataset is not None:
            if not any([dataset.has_targets() for dataset in self.monitoring_dataset.values()]):
                Y = None

            channels = model.get_monitoring_channels(X,Y)
            if not isinstance(channels, dict):
                raise TypeError("model.get_monitoring_channels must return a "
                                "dictionary, but it returned " + str(channels))
            channels.update(self.cost.get_monitoring_channels(model, X, Y, ** fixed_var_descr.fixed_vars))

            for dataset_name in self.monitoring_dataset:
                if dataset_name == '':
                    prefix = ''
                else:
                    prefix = dataset_name + '_'
                monitoring_dataset = self.monitoring_dataset[dataset_name]
                self.monitor.add_dataset(dataset=monitoring_dataset,
                                    mode="sequential",
                                    batch_size=self.batch_size,
                                    num_batches=self.monitoring_batches)

                # The monitor compiles all channels for the same dataset into one function, and
                # runs all prereqs before calling the function. So we only need to register the
                # on_load_batch prereq once per monitoring dataset.
                self.monitor.add_channel(prefix + 'objective',ipt=ipt,val=obj,
                        dataset = monitoring_dataset, prereqs = fixed_var_descr.on_load_batch)

                for name in channels:
                    J = channels[name]
                    if isinstance(J, tuple):
                        assert len(J) == 2
                        J, prereqs = J
                    else:
                        prereqs = None

                    if Y is not None:
                        ipt = (X,Y)
                    else:
                        ipt = X

                    self.monitor.add_channel(name= prefix + name,
                                             ipt=ipt,
                                             val=J,
                                             dataset = monitoring_dataset,
                                             prereqs=prereqs)

        if self.cost.supervised:
            ipts = [X, Y]
        else:
            ipts = [X]

        params = model.get_params()

        self.optimizer = BatchGradientDescent(
                            objective = obj,
                            gradients = grads,
                            gradient_updates = grad_updates,
                            params = params,
                            param_constrainers = [ model.censor_updates ],
                            lr_scalers = model.get_lr_scalers(),
                            inputs = ipts,
                            verbose = self.verbose_optimization,
                            max_iter = self.updates_per_batch,
                            reset_alpha = self.reset_alpha,
                            conjugate = self.conjugate,
                            reset_conjugate = self.reset_conjugate,
                            min_init_alpha = self.min_init_alpha,
                            line_search_mode = self.line_search_mode,
                            theano_function_mode=self.theano_function_mode,
                            init_alpha=self.init_alpha)

        if self.monitoring_dataset is not None:
            self.monitor.add_channel(name='ave_step_size',
                    ipt=ipt, val = self.optimizer.ave_step_size, dataset=self.monitoring_dataset.values()[0])
            self.monitor.add_channel(name='ave_grad_size',
                    ipt=ipt, val = self.optimizer.ave_grad_size, dataset=self.monitoring_dataset.values()[0])
            self.monitor.add_channel(name='ave_grad_mult',
                    ipt=ipt, val = self.optimizer.ave_grad_mult, dataset=self.monitoring_dataset.values()[0])


        self.first = True
        self.bSetup = True
開發者ID:poolio,項目名稱:pylearn,代碼行數:101,代碼來源:bgd.py

示例7: BGD

class BGD(TrainingAlgorithm):
    """Batch Gradient Descent training algorithm class"""
    def __init__(self, cost, batch_size=None, batches_per_iter=None,
                 updates_per_batch = 10,
                 monitoring_batches=None, monitoring_dataset=None,
                 termination_criterion = None, set_batch_size = False,
                 reset_alpha = True, conjugate = False,
                 min_init_alpha = .001,
                 reset_conjugate = True, line_search_mode = None,
                 verbose_optimization=False, scale_step=1., theano_function_mode=None,
                 init_alpha=None, seed=None):
        """
        cost: a pylearn2 Cost
        batch_size: Like the SGD TrainingAlgorithm, this TrainingAlgorithm
                    still iterates over minibatches of data. The difference
                    is that this class uses partial line searches to choose
                    the step size along each gradient direction, and can do
                    repeated updates on the same batch. The assumption is
                    that you use big enough minibatches with this algorithm that
                    a large step size will generalize reasonably well to other
                    minibatches.
                    To implement true Batch Gradient Descent, set the batch_size
                    to the total number of examples available.
                    If batch_size is None, it will revert to the model's force_batch_size
                    attribute.
        set_batch_size: If True, BGD will attempt to override the model's force_batch_size
                attribute by calling set_batch_size on it.
        updates_per_batch: Passed through to the optimization.BatchGradientDescent's
                   max_iters parameter
        reset_alpha, conjugate, reset_conjugate: passed through to the
            optimization.BatchGradientDescent parameters of the same names
        monitoring_dataset: A Dataset or a dictionary mapping string dataset names to Datasets
        """

        self.__dict__.update(locals())
        del self.self

        if monitoring_dataset is None:
            assert monitoring_batches == None


        self._set_monitoring_dataset(monitoring_dataset)

        self.bSetup = False
        self.termination_criterion = termination_criterion
        if seed is None:
            seed = [2012, 10, 16]
        self.rng = np.random.RandomState(seed)

    def setup(self, model, dataset):
        """
        Allows the training algorithm to do some preliminary configuration
        *before* we actually start training the model. The dataset is provided
        in case other derived training algorithms need to modify model based on
        the dataset.

        Parameters
        ----------
        model: a Python object representing the model to train loosely
        implementing the interface of models.model.Model.

        dataset: a pylearn2.datasets.dataset.Dataset object used to draw
        training data
        """
        self.model = model

        if self.batch_size is None:
            self.batch_size = model.force_batch_size
        else:
            batch_size = self.batch_size
            if self.set_batch_size:
                model.set_batch_size(batch_size)
            elif hasattr(model, 'force_batch_size'):
                if not (model.force_batch_size <= 0 or batch_size ==
                        model.force_batch_size):
                    raise ValueError("batch_size is %d but model.force_batch_size is %d" %
                            (batch_size, model.force_batch_size))

        self.monitor = Monitor.get_monitor(model)
        self.monitor.set_theano_function_mode(self.theano_function_mode)
        X = self.model.get_input_space().make_theano_batch()
        X.name = 'BGD_X'
        self.topo = X.ndim != 2
        Y = T.matrix()
        Y.name = 'BGD_Y'

        fixed_var_descr = self.cost.get_fixed_var_descr(model, X, Y)
        self.on_load_batch = fixed_var_descr.on_load_batch

        if not self.cost.supervised:
            Y = None

        if self.cost.supervised:
            obj = self.cost(model, X, Y, ** fixed_var_descr.fixed_vars)
            grads, grad_updates = self.cost.get_gradients(model, X, Y, ** fixed_var_descr.fixed_vars)
            ipt = (X,Y)
        else:
            obj = self.cost(model, X, ** fixed_var_descr.fixed_vars)
            grads, grad_updates = self.cost.get_gradients(model, X, ** fixed_var_descr.fixed_vars)
            ipt = X
#.........這裏部分代碼省略.........
開發者ID:poolio,項目名稱:pylearn,代碼行數:101,代碼來源:bgd.py

示例8: BatchGradientDescent

p, h = state

p_shape = layer.get_output_space().shape
i = p_shape[0] / 2
j = p_shape[1] / 2

act = p[0,filter_idx,i,j]

obj = - act + norm_penalty * T.square(X).sum()

assert obj.ndim == 0

optimizer = BatchGradientDescent(objective = obj,
        params = [X],
        inputs = None,
        param_constrainers = None,
        max_iter = 1000,
        verbose = True,
        tol = None,
        init_alpha = (.001, .005, .01, .05, .1))

optimizer.minimize()

img = X.get_value()[0,:,:,:]

print 'max mag: ',np.abs(img).max()
print 'norm: ',np.square(img).sum()
print 'min: ',img.min()
print 'max: ',img.max()

img /= np.abs(img).max()
開發者ID:cc13ny,項目名稱:galatea,代碼行數:31,代碼來源:optimal_input.py

示例9: setup_impl


#.........這裏部分代碼省略.........
        for i in xrange(self.num_points):
            print "Evaluating cost at point ", i

            point = points[i, :]
            full_point = root + np.dot(basis, point)
            model.set_param_vector(full_point)

            cost_values[i] = cost_fn(*data)
            print cost_values[i]


        from pylearn2.utils import sharedX
        import theano.tensor as T

        print "!!!!!!!! FITTING THE QUADRATIC FUNCTION !!!!!!!!!!!!!!!!!!!"

        if not hasattr(self, 'fit_quad'):
            points = sharedX(points)
            #from theano import config
            #config.compute_test_value = 'raise'
            cost_values = sharedX(cost_values)
            A = sharedX(np.zeros((self.num_basis_vectors, self.num_basis_vectors)))
            if self.psd:
                mat = T.dot(A.T, A)
            else:
                mat = A
            b = sharedX(np.zeros(self.num_basis_vectors))
            c = sharedX(0.)
            half_quad = T.dot(points, mat)
            quad = (points * half_quad).sum(axis=1)
            lin = T.dot(points, b)
            pred = quad + lin + c

            from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent

            mse = T.square(pred - cost_values).mean()
            mae = abs(pred - cost_values).mean()

            obj = locals()[self.fitting_cost]

            fit_quad = BatchGradientDescent(obj, params = [A, b, c],
                    max_iter = self.num_basis_vectors ** 2,
                    verbose = 3, tol = None,
                    init_alpha = None, min_init_alpha = 1e-7,
                    reset_alpha = False, conjugate = True,
                    reset_conjugate = False,
                    line_search_mode = 'exhaustive')
            self.fit_quad = fit_quad
            self.A = A
            self.b = b
            self.c = c
            self.points = points
            self.cost_values = cost_values
        else:
            self.A.set_value(.001 * np.identity(self.A.get_value().shape[0], dtype=self.A.dtype))
            self.b.set_value(self.b.get_value() * 0.)
            self.c.set_value(self.c.get_value() * 0.)
            self.points.set_value(points)
            self.cost_values.set_value(cost_values.astype(self.cost_values.dtype))

        self.fit_quad.minimize()

        print "!!!!!!!!!!!!! FINDING ITS MINIMUM !!!!!!!!!!!!!!!!!!!!!!!!!!!"

        if self.use_solver:
            if self.psd:
開發者ID:cc13ny,項目名稱:galatea,代碼行數:67,代碼來源:__init__.py

示例10: DNCE_Algorithm

class DNCE_Algorithm(object):
    def __init__(self, noise, batch_size=1000, batches_per_iter=10,
                     noise_per_clean = 30,
                 monitoring_batches=-1, monitoring_dataset=None):
        """
        if batch_size is None, reverts to the force_batch_size field of the
        model
        """
        self.batch_size, self.batches_per_iter = batch_size, batches_per_iter
        if monitoring_dataset is None:
            assert monitoring_batches == -1
        self.monitoring_dataset = monitoring_dataset
        self.monitoring_batches = monitoring_batches
        self.bSetup = False
        self.noise = noise
        self.noise_per_clean = noise_per_clean

    def setup(self, model, dataset):
        """
        Allows the training algorithm to do some preliminary configuration
        *before* we actually start training the model. The dataset is provided
        in case other derived training algorithms need to modify model based on
        the dataset.

        Parameters
        ----------
        model: a Python object representing the model to train loosely
        implementing the interface of models.model.Model.

        dataset: a pylearn2.datasets.dataset.Dataset object used to draw
        training data
        """
        self.model = model

        self.monitor = Monitor.get_monitor(model)
        X = T.matrix()
        Y = T.matrix()
        dnce = DNCE( self.noise)
        if self.monitoring_dataset is not None:
            if not self.monitoring_dataset.has_targets():
                Y = None
            self.monitor.set_dataset(dataset=self.monitoring_dataset,
                                mode="sequential",
                                batch_size=self.batch_size,
                                num_batches=self.monitoring_batches)
            X.tag.test_value = self.monitoring_dataset.get_batch_design(2)
            channels = model.get_monitoring_channels(X,Y)
            if not isinstance(channels, dict):
                raise TypeError("model.get_monitoring_channels must return a "
                                "dictionary, but it returned " + str(channels))

            dnce.noise_per_clean = self.noise_per_clean
            obj = dnce(model,X)
            dnce.noise_per_clean = None
            self.monitor.add_channel('DNCE',ipt=X,val=obj)

            for name in channels:
                J = channels[name]
                if isinstance(J, tuple):
                    assert len(J) == 2
                    J, prereqs = J
                else:
                    prereqs = None

                if Y is not None:
                    ipt = (X,Y)
                else:
                    ipt = X

                self.monitor.add_channel(name=name,
                                         ipt=ipt,
                                         val=J,
                                         prereqs=prereqs)

        X = sharedX( dataset.get_batch_design(1), 'X')
        Y = []
        updates = {}
        for i in xrange(self.noise_per_clean):
            Y_i = sharedX( X.get_value().copy() )
            updates[Y_i] = self.noise.random_design_matrix(X)
            Y.append(Y_i)
        self.update_noise = function([], updates = updates)


        obj = dnce(model,X,Y)

        self.optimizer = BatchGradientDescent(
                            objective = obj,
                            params = model.get_params(),
                            param_constrainers = [ model.censor_updates ],
                            max_iter = 5)
        self.X = X
        self.Y = Y


        self.first = True
        self.bSetup = True

    def train(self, dataset):
        assert self.bSetup
#.........這裏部分代碼省略.........
開發者ID:cc13ny,項目名稱:galatea,代碼行數:101,代碼來源:dnce_alg.py

示例11: setup

    def setup(self, model, dataset):
        """
        Allows the training algorithm to do some preliminary configuration
        *before* we actually start training the model. The dataset is provided
        in case other derived training algorithms need to modify model based on
        the dataset.

        Parameters
        ----------
        model: a Python object representing the model to train loosely
        implementing the interface of models.model.Model.

        dataset: a pylearn2.datasets.dataset.Dataset object used to draw
        training data
        """
        self.model = model

        if self.batch_size is None:
            self.batch_size = model.force_batch_size
        else:
            batch_size = self.batch_size
            if hasattr(model, 'force_batch_size'):
                if not (model.force_batch_size <= 0 or batch_size ==
                        model.force_batch_size):
                    raise ValueError("batch_size is %d but model.force_batch_size is %d" %
                            (batch_size, model.force_batch_size))

        self.monitor = Monitor.get_monitor(model)
        X = self.model.get_input_space().make_theano_batch()
        self.topo = X.ndim != 2
        Y = T.matrix()
        if self.monitoring_dataset is not None:
            if not self.monitoring_dataset.has_targets():
                Y = None
            self.monitor.add_dataset(dataset=self.monitoring_dataset,
                                mode="sequential",
                                batch_size=self.batch_size,
                                num_batches=self.monitoring_batches)
            channels = model.get_monitoring_channels(X,Y)
            if not isinstance(channels, dict):
                raise TypeError("model.get_monitoring_channels must return a "
                                "dictionary, but it returned " + str(channels))

            #TODO: currently only supports unsupervised costs, support supervised too
            obj = self.cost(model,X)
            self.monitor.add_channel('batch_gd_objective',ipt=X,val=obj)

            for name in channels:
                J = channels[name]
                if isinstance(J, tuple):
                    assert len(J) == 2
                    J, prereqs = J
                else:
                    prereqs = None

                if Y is not None:
                    ipt = (X,Y)
                else:
                    ipt = X

                self.monitor.add_channel(name=name,
                                         ipt=ipt,
                                         val=J,
                                         prereqs=prereqs)


        obj = self.cost(model,X)

        self.optimizer = BatchGradientDescent(
                            objective = obj,
                            params = model.get_params(),
                            param_constrainers = [ model.censor_updates ],
                            lr_scalers = model.get_lr_scalers(),
                            inputs = [ X ],
                            verbose = True,
                            max_iter = self.updates_per_batch)


        self.first = True
        self.bSetup = True
開發者ID:gdesjardins,項目名稱:pylearn,代碼行數:80,代碼來源:bgd.py

示例12: sharedX

_, model_path = sys.argv
from pylearn2.utils import serial
model = serial.load(model_path)
d = model.discriminator
import gc
del model
gc.collect()
from pylearn2.utils import sharedX
X = sharedX(d.get_input_space().get_origin_batch(1))
obj =  -d.fprop(X).sum()
from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent as BGD
import theano.tensor as T
def norm_constraint(updates):
    assert X in updates
    updates[X] = updates[X] / (1e-7 + T.sqrt(T.sqr(X).sum()))
opt = BGD(objective=obj, params=[X], param_constrainers=[norm_constraint], conjugate=True, reset_conjugate=False,
        reset_alpha=False, line_search_mode='exhaustive', verbose=3, max_iter=20)
results = []
import numpy as np
rng = np.random.RandomState([1, 2, 3])
for i in xrange(10):
    X.set_value(rng.randn(*X.get_value().shape).astype(X.dtype) / 10.)
    opt.minimize()
    Xv = X.dimshuffle(3, 1, 2, 0).eval()
    results.append(Xv)
X = np.concatenate(results, axis=0)
from pylearn2.gui.patch_viewer import make_viewer
v = make_viewer(X)
v.show()

開發者ID:cc13ny,項目名稱:galatea,代碼行數:29,代碼來源:realest.py

示例13: setup


#.........這裏部分代碼省略.........
            new_f = lambda *args: f(mapping.flatten(args, return_tuple=True))
            return new_f

        obj_prereqs = [capture(f) for f in fixed_var_descr.on_load_batch]

        if self.monitoring_dataset is not None:
            self.monitor.setup(
                    dataset=self.monitoring_dataset,
                    cost=self.cost,
                    batch_size=self.batch_size,
                    num_batches=self.monitoring_batches,
                    obj_prereqs=obj_prereqs,
                    cost_monitoring_args=fixed_var_descr.fixed_vars)

            # TODO : Why is this commented?
            '''
            channels = model.get_monitoring_channels(theano_args)
            if not isinstance(channels, dict):
                raise TypeError("model.get_monitoring_channels must return a "
                                "dictionary, but it returned " + str(channels))
            channels.update(self.cost.get_monitoring_channels(model, theano_args, ** fixed_var_descr.fixed_vars))

            for dataset_name in self.monitoring_dataset:
                if dataset_name == '':
                    prefix = ''
                else:
                    prefix = dataset_name + '_'
                monitoring_dataset = self.monitoring_dataset[dataset_name]
                self.monitor.add_dataset(dataset=monitoring_dataset,
                                    mode="sequential",
                                    batch_size=self.batch_size,
                                    num_batches=self.monitoring_batches)

                # The monitor compiles all channels for the same dataset into one function, and
                # runs all prereqs before calling the function. So we only need to register the
                # on_load_batch prereq once per monitoring dataset.
                self.monitor.add_channel(prefix + 'objective',ipt=ipt,val=cost_value,
                        dataset = monitoring_dataset, prereqs = fixed_var_descr.on_load_batch)

                for name in channels:
                    J = channels[name]
                    if isinstance(J, tuple):
                        assert len(J) == 2
                        J, prereqs = J
                    else:
                        prereqs = None

                    self.monitor.add_channel(name= prefix + name,
                                             ipt=ipt,
                                             val=J,
                                             data_specs=data_specs,
                                             dataset = monitoring_dataset,
                                             prereqs=prereqs)
                '''

        params = model.get_params()


        self.optimizer = BatchGradientDescent(
                            objective = cost_value,
                            gradients = grads,
                            gradient_updates = grad_updates,
                            params = params,
                            param_constrainers = [ model.censor_updates ],
                            lr_scalers = model.get_lr_scalers(),
                            inputs = theano_args,
                            verbose = self.verbose_optimization,
                            max_iter = self.updates_per_batch,
                            reset_alpha = self.reset_alpha,
                            conjugate = self.conjugate,
                            reset_conjugate = self.reset_conjugate,
                            min_init_alpha = self.min_init_alpha,
                            line_search_mode = self.line_search_mode,
                            theano_function_mode=self.theano_function_mode,
                            init_alpha=self.init_alpha)

        # These monitoring channels keep track of shared variables,
        # which do not need inputs nor data.
        if self.monitoring_dataset is not None:
            self.monitor.add_channel(
                    name='ave_step_size',
                    ipt=None,
                    val=self.optimizer.ave_step_size,
                    data_specs=(NullSpace(), ''),
                    dataset=self.monitoring_dataset.values()[0])
            self.monitor.add_channel(
                    name='ave_grad_size',
                    ipt=None,
                    val=self.optimizer.ave_grad_size,
                    data_specs=(NullSpace(), ''),
                    dataset=self.monitoring_dataset.values()[0])
            self.monitor.add_channel(
                    name='ave_grad_mult',
                    ipt=None,
                    val=self.optimizer.ave_grad_mult,
                    data_specs=(NullSpace(), ''),
                    dataset=self.monitoring_dataset.values()[0])

        self.first = True
        self.bSetup = True
開發者ID:alouisos,項目名稱:pylearn2,代碼行數:101,代碼來源:bgd.py

示例14: setup


#.........這裏部分代碼省略.........
        data_specs = self.cost.get_data_specs(model)
        mapping = DataSpecsMapping(data_specs)
        space_tuple = mapping.flatten(data_specs[0], return_tuple=True)
        source_tuple = mapping.flatten(data_specs[1], return_tuple=True)

        # Build a flat tuple of Theano Variables, one for each space,
        # named according to the sources.
        theano_args = []
        for space, source in safe_zip(space_tuple, source_tuple):
            name = 'BGD_[%s]' % source
            arg = space.make_theano_batch(name=name)
            theano_args.append(arg)
        theano_args = tuple(theano_args)

        # Methods of `self.cost` need args to be passed in a format compatible
        # with their data_specs
        nested_args = mapping.nest(theano_args)
        fixed_var_descr = self.cost.get_fixed_var_descr(model, nested_args)
        self.on_load_batch = fixed_var_descr.on_load_batch

        cost_value = self.cost.expr(model, nested_args,
                                    ** fixed_var_descr.fixed_vars)
        grads, grad_updates = self.cost.get_gradients(
            model, nested_args, ** fixed_var_descr.fixed_vars)

        assert isinstance(grads, OrderedDict)
        assert isinstance(grad_updates, OrderedDict)

        if cost_value is None:
            raise ValueError("BGD is incompatible with " + str(self.cost) +
                             " because it is intractable, but BGD uses the " +
                             "cost function value to do line searches.")

        # obj_prereqs has to be a list of function f called with f(*data),
        # where data is a data tuple coming from the iterator.
        # this function enables capturing "mapping" and "f", while
        # enabling the "*data" syntax
        def capture(f, mapping=mapping):
            new_f = lambda *args: f(mapping.flatten(args, return_tuple=True))
            return new_f

        obj_prereqs = [capture(f) for f in fixed_var_descr.on_load_batch]

        if self.monitoring_dataset is not None:
            if (self.monitoring_batch_size is None and
                    self.monitoring_batches is None):
                self.monitoring_batch_size = self.batch_size
                self.monitoring_batches = self.batches_per_iter
            self.monitor.setup(
                dataset=self.monitoring_dataset,
                cost=self.cost,
                batch_size=self.monitoring_batch_size,
                num_batches=self.monitoring_batches,
                obj_prereqs=obj_prereqs,
                cost_monitoring_args=fixed_var_descr.fixed_vars)

        params = model.get_params()

        self.optimizer = BatchGradientDescent(
            objective=cost_value,
            gradients=grads,
            gradient_updates=grad_updates,
            params=params,
            param_constrainers=[model.modify_updates],
            lr_scalers=model.get_lr_scalers(),
            inputs=theano_args,
            verbose=self.verbose_optimization,
            max_iter=self.updates_per_batch,
            reset_alpha=self.reset_alpha,
            conjugate=self.conjugate,
            reset_conjugate=self.reset_conjugate,
            min_init_alpha=self.min_init_alpha,
            line_search_mode=self.line_search_mode,
            theano_function_mode=self.theano_function_mode,
            init_alpha=self.init_alpha)

        # These monitoring channels keep track of shared variables,
        # which do not need inputs nor data.
        if self.monitoring_dataset is not None:
            self.monitor.add_channel(
                name='ave_step_size',
                ipt=None,
                val=self.optimizer.ave_step_size,
                data_specs=(NullSpace(), ''),
                dataset=first_value(self.monitoring_dataset))
            self.monitor.add_channel(
                name='ave_grad_size',
                ipt=None,
                val=self.optimizer.ave_grad_size,
                data_specs=(NullSpace(), ''),
                dataset=first_value(self.monitoring_dataset))
            self.monitor.add_channel(
                name='ave_grad_mult',
                ipt=None,
                val=self.optimizer.ave_grad_mult,
                data_specs=(NullSpace(), ''),
                dataset=first_value(self.monitoring_dataset))

        self.first = True
        self.bSetup = True
開發者ID:123fengye741,項目名稱:pylearn2,代碼行數:101,代碼來源:bgd.py

示例15: BGD

class BGD(TrainingAlgorithm):
    """Batch Gradient Descent training algorithm class"""
    def __init__(self, cost=None, batch_size=None, batches_per_iter=None,
                 updates_per_batch=10, monitoring_batches=None,
                 monitoring_dataset=None, termination_criterion = None,
                 set_batch_size=False, reset_alpha=True, conjugate=False,
                 min_init_alpha=.001, reset_conjugate=True,
                 line_search_mode=None, verbose_optimization=False,
                 scale_step=1., theano_function_mode=None, init_alpha=None,
                 seed=None):
        """
        Parameters
        ----------
        cost : pylearn2.costs.Cost
            A pylearn2 Cost, or None, in which case model.get_default_cost() \
            will be used
        batch_size : int
            Like the SGD TrainingAlgorithm, this TrainingAlgorithm still \
            iterates over minibatches of data. The difference is that this \
            class uses partial line searches to choose the step size along \
            each gradient direction, and can do repeated updates on the same \
            batch. The assumption is that you use big enough minibatches with \
            this algorithm that a large step size will generalize reasonably \
            well to other minibatches. To implement true Batch Gradient \
            Descent, set the batch_size to the total number of examples \
            available. If batch_size is None, it will revert to the model's \
            force_batch_size attribute.
        batches_per_iter : int
            WRITEME
        updates_per_batch : int
            Passed through to the optimization.BatchGradientDescent's \
            `max_iters parameter`
        monitoring_batches : WRITEME
        monitoring_dataset: Dataset or dict
            A Dataset or a dictionary mapping string dataset names to Datasets
        termination_criterion : WRITEME
        set_batch_size : bool
            If True, BGD will attempt to override the model's \
            `force_batch_size` attribute by calling set_batch_size on it.
        reset_alpha : bool
            Passed through to the optimization.BatchGradientDescent's \
            `max_iters parameter`
        conjugate : bool
            Passed through to the optimization.BatchGradientDescent's \
            `max_iters parameter`
        min_init_alpha : float
            WRITEME
        reset_conjugate : bool
            Passed through to the optimization.BatchGradientDescent's \
            `max_iters parameter`
        line_search_mode : WRITEME
        verbose_optimization : bool
            WRITEME
        scale_step : float
            WRITEME
        theano_function_mode : WRITEME
        init_alpha : WRITEME
        seed : WRITEME
        """

        self.__dict__.update(locals())
        del self.self

        if monitoring_dataset is None:
            assert monitoring_batches == None


        self._set_monitoring_dataset(monitoring_dataset)

        self.bSetup = False
        self.termination_criterion = termination_criterion
        if seed is None:
            seed = [2012, 10, 16]
        self.rng = np.random.RandomState(seed)

    def setup(self, model, dataset):
        """
        Allows the training algorithm to do some preliminary configuration
        *before* we actually start training the model. The dataset is provided
        in case other derived training algorithms need to modify model based on
        the dataset.

        Parameters
        ----------
        model : object
            A Python object representing the model to train loosely \
            implementing the interface of models.model.Model.
        dataset : pylearn2.datasets.dataset.Dataset
            Dataset object used to draw training data
        """
        self.model = model

        if self.cost is None:
            self.cost = model.get_default_cost()

        if self.batch_size is None:
            self.batch_size = model.force_batch_size
        else:
            batch_size = self.batch_size
            if self.set_batch_size:
#.........這裏部分代碼省略.........
開發者ID:alouisos,項目名稱:pylearn2,代碼行數:101,代碼來源:bgd.py


注:本文中的pylearn2.optimization.batch_gradient_descent.BatchGradientDescent類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。