當前位置: 首頁>>代碼示例>>Python>>正文


Python NumericUtils.weightedAverage方法代碼示例

本文整理匯總了Python中pyaid.number.NumericUtils.NumericUtils.weightedAverage方法的典型用法代碼示例。如果您正苦於以下問題:Python NumericUtils.weightedAverage方法的具體用法?Python NumericUtils.weightedAverage怎麽用?Python NumericUtils.weightedAverage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyaid.number.NumericUtils.NumericUtils的用法示例。


在下文中一共展示了NumericUtils.weightedAverage方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_weightedAverage

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import weightedAverage [as 別名]
    def test_weightedAverage(self):
        """ doc... """
        values = [
            NumericUtils.toValueUncertainty(11.0, 1.0),
            NumericUtils.toValueUncertainty(12.0, 1.0),
            NumericUtils.toValueUncertainty(10.0, 3.0) ]

        result = NumericUtils.weightedAverage(*values)

        self.assertEqual(result.value, 11.4, 'Value Match')
        self.assertEqual(result.uncertainty, 0.7, 'Value Match')
開發者ID:sernst,項目名稱:PyAid,代碼行數:13,代碼來源:Test_NumericUtils.py

示例2: _postAnalyze

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import weightedAverage [as 別名]
    def _postAnalyze(self):
        """_postAnalyze doc..."""

        label = 'Both'
        lows, mids, highs, tsValues, twValues, totals = self._processSparsenessResults(None)
        self._paths.append(self._scatterSparseness(label, lows, mids, highs))
        self._paths.append(self._histogramSeriesSparseness(label, tsValues))
        self._paths.append(self._histogramTrackwaySparseness(label, twValues))

        totalAve = NumericUtils.weightedAverage(*totals)
        self.logger.write('Total Average Spareness: %s' % totalAve.label)

        label = 'Pes'
        lows, mids, highs, tsValues, twValues, totals = self._processSparsenessResults('pes')
        self._paths.append(self._scatterSparseness(label, lows, mids, highs))
        self._paths.append(self._histogramSeriesSparseness(label, tsValues))
        self._paths.append(self._histogramTrackwaySparseness(label, twValues))

        totalAve = NumericUtils.weightedAverage(*totals)
        self.logger.write('Total Average Pes Spareness: %s' % totalAve.label)

        label = 'Manus'
        lows, mids, highs, tsValues, twValues, totals = self._processSparsenessResults('manus')
        self._paths.append(self._scatterSparseness(label, lows, mids, highs))
        self._paths.append(self._histogramSeriesSparseness(label, tsValues))
        self._paths.append(self._histogramTrackwaySparseness(label, twValues))

        totalAve = NumericUtils.weightedAverage(*totals)
        self.logger.write('Total Average Manus Spareness: %s' % totalAve.label)

        self.mergePdfs(self._paths, 'Trackway-Curve-Stats.pdf')

        # Add the reference series to the session object for storage in the Analysis_Trackway
        # table. This data persists because it is used later to rebuild track curves in other
        # analyzers.
        for uid, data in DictUtils.iter(self.data):
            trackway = data['trackway']
            result = trackway.getAnalysisPair(self.analysisSession, createIfMissing=True)
            result.curveSeries = data['dense'].firstTrackUid if data['dense'] else ''
開發者ID:sernst,項目名稱:Cadence,代碼行數:41,代碼來源:CurveSparsenessStage.py

示例3: _processSparsenessResults

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import weightedAverage [as 別名]
    def _processSparsenessResults(self, key):
        """_processSparsenessResults doc..."""

        index       = 0
        means       = []
        totals      = []
        twValues    = []
        tsValues    = []

        lows        = dict(x=[], y=[], error=[], color='#666666')
        mids        = dict(x=[], y=[], error=[], color='#33CC33')
        highs       = dict(x=[], y=[], error=[], color='#CC3333')

        for uid, entry in DictUtils.iter(self.data):
            # For each test list in track ratings process the data and filter it into the correct
            # segments for plotting.

            data = (entry['pes'] + entry['manus']) if not key else entry[key]
            data = ListUtils.sortObjectList(data, 'value')
            index += 1

            if len(data) < 2:
                continue

            average = NumericUtils.weightedAverage(*data[1:])
            means.append(average)
            totals.extend(data[1:])
            twValues.append(average.value)

            maxVal = data[0]
            for v in data[1:]:
                if v.value > maxVal.value:
                    maxVal = v

            if maxVal.value < 15.0:
                target = lows
            elif maxVal.value < 50.0:
                target = mids
            else:
                target = highs

            for v in data[1:]:
                tsValues.append(v.value)

                target['x'].append(index)
                target['y'].append(v.value)
                target['error'].append(v.uncertainty)

        return lows, mids, highs, tsValues, twValues, totals
開發者ID:sernst,項目名稱:Cadence,代碼行數:51,代碼來源:CurveSparsenessStage.py

示例4: averageTrackLength

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import weightedAverage [as 別名]
    def averageTrackLength(self):
        values = []
        for t in self.tracks:
            values.append(t.lengthValue)

        return NumericUtils.weightedAverage(values)
開發者ID:sernst,項目名稱:Cadence,代碼行數:8,代碼來源:TrackSeries.py

示例5: _sampleTrackway

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import weightedAverage [as 別名]
    def _sampleTrackway(self, trackway, windowSize):
        """
            Samples the trackway and returns result
            @type trackway: * """

        window = []
        samples = []

        entries = self.trackHeadingData[trackway.uid]['entries']
        analysisTrackway = trackway.getAnalysisPair(self.analysisSession)

        for entry in entries:
            # For each track entry in the trackways data add that to the sample window and update
            # the samples result

            window.append(entry)

            if len(window) < windowSize:
                # Don't create a sample until the sub-sample list exceeds the sample window size
                continue

            xTests        = [] # X spatial position values
            yTests        = [] # Y spatial position values
            angleTests    = [] # Heading angle values
            curvePosTests = [] # Curve position values
            for item in window:
                # Calculate weighted averages for various properties of the current sample window

                angle = item.headingAngle
                angleTests.append(angle.valueDegrees)

                # Create a ValueUncertainty for the curve position by using the fractional
                # positional uncertainty over the spatial length of the curve
                posValue = item.track.positionValue
                posUnc = math.sqrt(posValue.xUnc**2 + posValue.yUnc**2)
                curvePos = item.track.getAnalysisPair(self.analysisSession).curvePosition
                curvePosUnc = abs(posUnc/analysisTrackway.curveLength)
                curvePosTests.append(NumericUtils.toValueUncertainty(curvePos, curvePosUnc))

                pv = item.track.positionValue
                xTests.append(pv.xValue)
                yTests.append(pv.yValue)

            directionAngleMean = NumericUtils.weightedAverage(*angleTests)
            curvePositionMean = NumericUtils.weightedAverage(*curvePosTests)
            xValue = NumericUtils.weightedAverage(*xTests)
            yValue = NumericUtils.weightedAverage(*yTests)
            position = PositionValue2D(
                x=xValue.raw, xUnc=xValue.rawUncertainty,
                y=yValue.raw, yUnc=yValue.rawUncertainty)

            # Remove the oldest sample from the to make room for a new sample in the next iteration
            window.pop(0)

            if len(samples) > 0:
                # Compare this sample to the previous one and if it does not differ
                # significantly then continue to continue to the next iteration
                last = samples[-1].directionAngle
                totalUnc = last.rawUncertainty + directionAngleMean.rawUncertainty
                deviation = abs(directionAngleMean.raw - last.raw)/totalUnc
                if deviation < 2.0:
                    continue

            samples.append(self.SAMPLE_DATA_NT(
                directionAngle=directionAngleMean,
                position=position,
                curvePoint=(
                    curvePositionMean.value, directionAngleMean.value,
                    curvePositionMean.uncertainty, directionAngleMean.uncertainty),
                curvePosition=curvePositionMean,
                track=entry.track ))

        self._extendSamplesToTrackwayStart(entries[0], samples)
        self._extendSampleToTrackwayEnd(entries[-1], samples)
        return samples
開發者ID:sernst,項目名稱:Cadence,代碼行數:77,代碼來源:TrackwayDirectionStage.py


注:本文中的pyaid.number.NumericUtils.NumericUtils.weightedAverage方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。