當前位置: 首頁>>代碼示例>>Python>>正文


Python NumericUtils.roundToOrder方法代碼示例

本文整理匯總了Python中pyaid.number.NumericUtils.NumericUtils.roundToOrder方法的典型用法代碼示例。如果您正苦於以下問題:Python NumericUtils.roundToOrder方法的具體用法?Python NumericUtils.roundToOrder怎麽用?Python NumericUtils.roundToOrder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyaid.number.NumericUtils.NumericUtils的用法示例。


在下文中一共展示了NumericUtils.roundToOrder方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: makePlot

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
def makePlot(label, tracks):
    tracks = tracks.copy()

    xBounds = [
        NumericUtils.roundToOrder(tracks.length.min() - 0.05, -1, math.floor),
        NumericUtils.roundToOrder(tracks.length.max() + 0.05, -1, math.ceil)]
    yBounds = [
        NumericUtils.roundToOrder(tracks.width.min() - 0.05, -1, math.floor),
        NumericUtils.roundToOrder(tracks.width.max() + 0.05, -1, math.ceil)]

    fig = plotlyTools.make_subplots(
        rows=1, cols=2,
        subplot_titles=('Length vs Width','Aspect Ratios'),
        print_grid=False)

    traces = []
    for site in tracks.site.unique():
        color = PlotConfigs.SITE_SPECS[site]['color']
        siteSlice = tracks[tracks.site == site]
        traces.append(plotlyGraph.Scatter(
            name=site,
            mode='markers',
            xaxis='x1', yaxis='y1',
            marker=plotlyGraph.Marker(color=color),
            x=siteSlice.length,
            y=siteSlice.width))

        traces.append(plotlyGraph.Box(
            name=site,
            y=siteSlice.length/siteSlice.width,
            marker=plotlyGraph.Marker(color=color),
            xaxis='x2', yaxis='y2'))

    fig['data'] += plotlyGraph.Data(traces)
    fig['layout'].update(
        title='%s Length & Width by Tracksite' % label,
        xaxis1=plotlyGraph.XAxis(
            title='Length (m)',
            range=xBounds,
            autorange=False ),
        yaxis1=plotlyGraph.YAxis(
            title='Width (m)',
            range=yBounds,
            autorange=False ))

    url = plotly.plot(
        filename='A16/%s-Length-Width' % label,
        figure_or_data=fig,
        auto_open=False)
    print('PLOT[%s]:' % label, PlotlyUtils.toEmbedUrl(url))
開發者ID:sernst,項目名稱:Cadence,代碼行數:52,代碼來源:BasicFigures.py

示例2: test_roundToOrder

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def test_roundToOrder(self):
        """test_roundToOrder doc..."""
        self.assertAlmostEqual(123.3, NumericUtils.roundToOrder(123.345, -1))

        # Using the round operator, which rounds 5 up when odd, down when even
        self.assertAlmostEqual(123.34, NumericUtils.roundToOrder(123.345, -2))
        self.assertAlmostEqual(123.36, NumericUtils.roundToOrder(123.355, -2))

        self.assertAlmostEqual(123, NumericUtils.roundToOrder(123.345, 0))
        self.assertAlmostEqual(120, NumericUtils.roundToOrder(123.345, 1))
        self.assertAlmostEqual(100, NumericUtils.roundToOrder(123.345, 2))
開發者ID:sernst,項目名稱:PyAid,代碼行數:13,代碼來源:Test_NumericUtils.py

示例3: _analyzeTrackSeries

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _analyzeTrackSeries(self, series, trackway, sitemap):
        if len(series.tracks) < 2:
            return

        prev_track = series.tracks[0]
        for track in series.tracks[1:]:
            stride_line = LineSegment2D(
                start=prev_track.positionValue,
                end=track.positionValue)

            stride_angle = stride_line.angle
            abs_angle = Angle(degrees=prev_track.rotation)


            if not prev_track.left:
                local_angle = stride_angle.differenceBetween(abs_angle)
            else:
                local_angle = abs_angle.differenceBetween(stride_angle)

            has_field_measurements = not prev_track.hasImportFlag(
                ImportFlagsEnum.NO_FIELD_MEASUREMENTS
            )

            if has_field_measurements:
                measuredRotation = prev_track.rotationMeasured
                difference = round(abs(measuredRotation - local_angle.degrees))
                deviation = NumericUtils.roundToOrder(
                    value=difference/prev_track.rotationUncertainty,
                    orderOfMagnitude=-2)
            else:
                measuredRotation = ''
                difference = ''
                deviation = ''

            self._csv.createRow(
                uid=prev_track.uid,
                fingerprint=prev_track.fingerprint,
                difference=difference,
                deviation=deviation,
                localRotation=round(local_angle.degrees),
                measuredRotation=measuredRotation)
            prev_track = track
開發者ID:sernst,項目名稱:Cadence,代碼行數:44,代碼來源:LocalRotationsStage.py

示例4: _process

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _process(self):
        """_processDeviations doc..."""
        errors  = []

        for entry in self.entries:
            if 'fractional' in entry:
                errors.append(entry['fractional'])

        res = NumericUtils.getMeanAndDeviation(errors)
        self.logger.write('Fractional Stride Error %s' % res.label)

        label = 'Fractional Stride Errors'
        self._paths.append(self._makePlot(
            label=label,
            data=errors,
            histRange=(-1.0, 1.0) ))
        self._paths.append(self._makePlot(
            label=label,
            data=errors,
            isLog=True,
            histRange=(-1.0, 1.0) ))

        # noinspection PyUnresolvedReferences
        d = np.absolute(np.array(errors))
        self._paths.append(self._makePlot(
            label='Absolute %s' % label,
            data=d, histRange=(0.0, 1.0) ))
        self._paths.append(self._makePlot(
            label='Absolute %s' % label,
            data=d,
            isLog=True,
            histRange=(0.0, 1.0) ))

        highDeviationCount = 0

        for entry in self.entries:
            if 'measured' not in entry:
                # Skip tracks that have no measured stride value for comparison
                continue

            if entry['deviation'] > 2.0:
                highDeviationCount += 1

            track = entry['track']
            delta = NumericUtils.roundToSigFigs(100.0*abs(entry['delta']), 3)

            self._csv.addRow({
                'fingerprint':track.fingerprint,
                'uid':track.uid,
                'measured':entry['measured'].label,
                'entered':entry['entered'].label,
                'dev':entry['deviation'],
                'delta':delta})

        if not self._csv.save():
            self.logger.write(
                '[ERROR]: Failed to save CSV file %s' % self._csv.path)

        percentage = NumericUtils.roundToOrder(
            100.0*float(highDeviationCount)/float(len(self.entries)), -2)
        self.logger.write(
            '%s significant %s (%s%%)' % (
                highDeviationCount,
                label.lower(),
                percentage))

        if percentage > (100.0 - 95.45):
            self.logger.write(
                '[WARNING]: Large deviation count exceeds normal ' +
                'distribution expectations.')
開發者ID:sernst,項目名稱:Cadence,代碼行數:72,代碼來源:StrideLengthStage.py

示例5: _process

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _process(
            self, label, widthKey, lengthKey, trackDeviations,
            absoluteOnly =False
    ):
        """_process doc..."""
        pl  = self.plot
        ws  = []
        ls  = []
        w2D = []
        l2D = []

        for entry in self.entries:
            if widthKey in entry:
                ws.append(entry[widthKey])
                if lengthKey in entry:
                    w2D.append(entry[widthKey])

            if lengthKey in entry:
                ls.append(entry[lengthKey])
                if widthKey in entry:
                    l2D.append(entry[lengthKey])

        plotList = [
            ('widths', ws, 'Width', 'b'),
            ('lengths', ls, 'Length', 'r')]

        wRes = NumericUtils.getMeanAndDeviation(ws)
        self.logger.write('Width %ss' % wRes.label)
        lRes = NumericUtils.getMeanAndDeviation(ls)
        self.logger.write('Length %ss' % lRes.label)

        for data in plotList:
            if not absoluteOnly:
                d = data[1]
                self._paths.append(
                    self._makePlot(
                        label, d, data,
                        histRange=(-1.0, 1.0)))
                self._paths.append(
                    self._makePlot(
                        label, d, data,
                        isLog=True,
                        histRange=(-1.0, 1.0)))

            # noinspection PyUnresolvedReferences
            d = np.absolute(np.array(data[1]))
            self._paths.append(
                self._makePlot(
                    'Absolute ' + label, d, data,
                    histRange=(0.0, 1.0)))
            self._paths.append(
                self._makePlot(
                    'Absolute ' + label, d, data,
                    isLog=True,
                    histRange=(0.0, 1.0)))

        self.owner.createFigure('twoD')
        pl.hist2d(w2D, l2D, bins=20, range=([-1, 1], [-1, 1]))
        pl.title('2D %s Distribution' % label)
        pl.xlabel('Width %s' % label)
        pl.ylabel('Length %s' % label)
        pl.xlim(-1.0, 1.0)
        pl.ylim(-1.0, 1.0)
        path = self.getTempPath(
            '%s.pdf' % StringUtils.getRandomString(16),
            isFile=True)
        self.owner.saveFigure('twoD', path)
        self._paths.append(path)

        csv = CsvWriter()
        csv.path = self.getPath(
            '%s-Deviations.csv' % label.replace(' ', '-'),
            isFile=True)
        csv.addFields(
            ('uid', 'UID'),
            ('fingerprint', 'Fingerprint'),
            ('wSigma', 'Width Deviation'),
            ('lSigma', 'Length Deviation') )

        count = 0
        for entry in self.entries:
            widthDevSigma  = NumericUtils.roundToOrder(
                abs(entry.get(widthKey, 0.0)/wRes.uncertainty), -2)
            lengthDevSigma = NumericUtils.roundToOrder(
                abs(entry.get(lengthKey, 0.0)/lRes.uncertainty), -1)
            if widthDevSigma > 2.0 or lengthDevSigma > 2.0:
                count += 1
                track = entry['track']
                data = dict(
                    wSigma=widthDevSigma,
                    lSigma=lengthDevSigma)

                if trackDeviations is not None:
                    trackDeviations[track.uid] = data

                csv.createRow(
                    uid=track.uid,
                    fingerprint=track.fingerprint,
                    **data)

#.........這裏部分代碼省略.........
開發者ID:sernst,項目名稱:Cadence,代碼行數:103,代碼來源:LengthWidthStage.py

示例6: _analyzeSitemap

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _analyzeSitemap(self, sitemap):
        """_analyzeSitemap doc..."""

        smCount         = 0
        smInCompCount   = 0
        ignores         = 0

        #-------------------------------------------------------------------------------------------
        # SITE MAP TRACKS
        #       Iterate through all the tracks within a sitemap and look for hidden or orphaned
        #       tracks to account for any that may not be loaded by standard means. Any tracks
        #       found this way are removed from the all list created above, which specifies that
        #       they were found by other means.
        tracks    = sitemap.getAllTracks()
        trackways = self.owner.getTrackways(sitemap)
        processed = []

        for t in tracks:
            if t.uid in self._allTracks:
                del self._allTracks[t.uid]

            if t.next and t.next == t.uid:
                self.logger.write([
                    '[ERROR]: Circular track reference (track.uid == track.next)',
                    'TRACK: %s (%s)' % (t.fingerprint, t.uid) ])

            if not t.hidden and t.next:
                continue

            prev = t.getPreviousTrack()
            if prev and not t.hidden:
                continue
            elif not t.hidden:
                # Check for solo tracks, i.e. tracks that are the only track in their series and
                # would appear to be orphaned even though they are in a series because the series
                # itself has no connections
                soloTrack = False
                for tw in trackways:
                    if t.uid in tw.firstTracksList:
                        soloTrack = True
                        break

                if soloTrack:
                    self._soloTrackCsv.createRow(
                        uid=t.uid,
                        fingerprint=t.fingerprint)
                    continue

            self.ignoredCount += 1
            ignores += 1

            isOrphaned = not t.next and not prev

            self._orphanCsv.createRow(
                fingerprint=t.fingerprint,
                orphan='YES' if isOrphaned else 'NO',
                hidden='YES' if t.hidden else 'NO',
                uid=t.uid,
                sitemap=sitemap.filename)
            processed.append(t)

        #-------------------------------------------------------------------------------------------
        # TRACKWAYS
        #       Iterate over the trackways within the current site
        for tw in self.owner.getTrackways(sitemap):
            series          = dict()
            twCount         = 0
            twIncomplete    = 0
            isReady         = True

            try:
                bundle = self.owner.getSeriesBundle(tw)
            except Exception:
                self.logger.write(
                    '[ERROR]: Invalid trackway series in %s. Skipping status check.' % tw.name)
                continue

            for s in bundle.asList():
                isReady         = isReady and s.isReady
                twCount        += s.count
                twIncomplete   += len(s.incompleteTracks)

                for t in s.tracks:
                    if t not in processed:
                        processed.append(t)

                suffix = ''
                if not s.isValid:
                    suffix += '*'
                if not s.isComplete:
                    suffix += '...'

                series[s.trackwayKey] = '%s%s' % (int(s.count), suffix)

            completion = NumericUtils.roundToOrder(
                100.0*float(twCount - twIncomplete)/float(twCount), -2)

            self._trackwayCsv.createRow(
                name=tw.name,
                incomplete=twIncomplete,
#.........這裏部分代碼省略.........
開發者ID:sernst,項目名稱:Cadence,代碼行數:103,代碼來源:TrackwayLoadStage.py

示例7: _postAnalyze

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]

#.........這裏部分代碼省略.........

        # If track uncertainty is 2x average, add that track to the spreadsheet and map overlay
        for t in self._tracks:

            # if the tracksite has changed, save previous map and make a new one
            if sitemap != t.trackSeries.trackway.sitemap:

                # save the last site map drawing (if there was one)
                if drawing:
                    drawing.save()

                # then start a new drawing for this new site map
                sitemap = t.trackSeries.trackway.sitemap

                fileName = "%s-%s-ROTATION_UNC.svg" % (sitemap.name, sitemap.level)
                path = self.getPath(self.DRAWING_FOLDER_NAME, fileName, isFile=True)
                drawing = CadenceDrawing(path, sitemap)

                # create a group to be instanced for the spreadsheet values
                drawing.createGroup("rect1")
                # create a rectangle of 100x100 cm that is to be scaled by fractional meters
                drawing.rect((0, 0), 100, 100, scene=True, groupId="rect1")

                # create another group to be instanced for the mapped values.
                drawing.createGroup("rect2")
                # create a rectangle of 100x100 cm that is to be scaled by fractional meters
                drawing.rect((0, 0), 100, 100, scene=True, groupId="rect2")

                # and place a grid and the federal coordinates in the drawing file
                drawing.grid()
                drawing.federalCoordinates()

            # now examine the positional uncertainties for this track
            rotation = t.rotationAngle.valueDegrees
            if rotation.uncertainty <= 2.0 * average.uncertainty:

                # then just indicate that this track has low uncertainty
                self._drawLowUncertaintyMarker(drawing, t)

                # label this track green
                # drawing.text(
                #     t.name,
                #     (t.x - 20, t.z),
                #     scene=True,
                #     stroke='green',
                #     stroke_width='0.25',
                #     font_size='8px',
                #     font_family='Arial')
                continue

            # else, since the uncertainty is high, first write that track in the spreadsheet
            largeUncertaintyCount += 1
            self._largeUncCsv.createRow(uid=t.uid, fingerprint=t.fingerprint, r=rotation.label)

            # if either the measured width or length is 0, mark with a yellow disk with red outline
            if t.rotationMeasured == 0:
                drawing.circle(
                    (t.x, t.z),
                    100 * (t.widthUncertainty + t.lengthUncertainty) / 2.0,
                    scene=True,
                    fill="yellow",
                    stroke="red",
                )

                # drawing.text(
                #     t.name,
                #     (t.x - 20, t.z),
                #     scene=True,
                #     stroke='black',
                #     stroke_width='0.25',
                #     font_size='6px',
                #     font_family='Arial')
                continue

            self._drawHighUncertaintyMarker(drawing, t)

            # label this track with red
            # drawing.text(
            #     t.name,
            #     (t.x - 20, t.z),
            #     scene=True,
            #     stroke='red',
            #     stroke_width='0.25',
            #     font_size='6px',
            #     font_family='Arial')

        # and close off with a final save of the drawing file
        if drawing:
            drawing.save()

        self.logger.write(
            "%s Tracks with large rotational uncertainties found (%s%%)"
            % (
                largeUncertaintyCount,
                NumericUtils.roundToOrder(100.0 * float(largeUncertaintyCount) / float(len(self._tracks)), -1),
            )
        )

        self._largeUncCsv.save()
        self._tracks = []
開發者ID:sernst,項目名稱:Cadence,代碼行數:104,代碼來源:RotationalUncertaintyStage.py

示例8: _postAnalyze

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]

#.........這裏部分代碼省略.........
                # and place a grid and the federal coordinates in the drawing file
                drawing.grid()
                drawing.federalCoordinates()

            # now examine the positional uncertainties for this track
            x = t.xValue
            z = t.zValue

            if x.uncertainty > 0.15 or z.uncertainty > 0.15:
                # s = '%s%s %s%s: %s %s'% (
                #     t.site, t.level, t.trackwayType, t.trackwayNumber, t.name, t.uid)
                # print('%s:  (%s and %s)' % (s, x.uncertainty, z.uncertainty))
                print('%s\t%s' % (t.uid, t.fingerprint))

            if max(x.uncertainty, z.uncertainty) <= 2.0*average.uncertainty:
                # then just indicate that this track has low uncertainty
                self._drawLowUncertaintyMarker(drawing, t)
                # label this track with green
                drawing.text(
                    t.name,
                    (t.x - 20, t.z),
                    scene=True,
                    stroke='green',
                    stroke_width='0.25',
                    font_size='8px',
                    font_family='Arial')
                continue

            # else, since the uncertainty is high, first write that track in the spreadsheet
            largeUncertaintyCount += 1
            self._largeUncCsv.createRow(
                uid=t.uid,
                fingerprint=t.fingerprint,
                x=x.label,
                z=z.label)

            # if either the measured width or length is 0, mark with a yellow disk with red outline
            if t.widthMeasured == 0 or t.lengthMeasured == 0:
                drawing.circle(
                    (t.x, t.z),
                    100*(t.widthUncertainty + t.lengthUncertainty)/2.0,
                    scene=True,
                    fill='yellow',
                    stroke='red')
                drawing.text(
                    t.name,
                    (t.x - 20, t.z),
                    scene=True,
                    stroke='black',
                    stroke_width='0.25',
                    font_size='6px',
                    font_family='Arial')
                continue

            self._drawHighUncertaintyMarker(drawing, t)

            # label this track with red
            drawing.text(
                t.name,
                (t.x - 20, t.z),
                scene=True,
                stroke='red',
                stroke_width='0.25',
                font_size='6px',
                font_family='Arial')
#
#             # draw this track indicating it has high uncertainty
#             drawing.use(
#                     'rect1',
#                     (t.x, t.z),
#                     scene=True,
#                     rotation=t.rotation,
#                     opacity='0.5',
#                     scale=t.widthMeasured,
#                     scaleY=t.lengthMeasured,
#                     fill='red',
#                     stroke='red')
#
#             # draw the map dimensions with an outline gray rectangle
#             drawing.use(
#                     'rect2',
#                     (t.x, t.z),
#                     scene=True,
#                     rotation=t.rotation,
#                     scale=t.width,
#                     scaleY=t.length,
#                     fill='none',
#                     stroke='gray')

        # and close off with a final save of the drawing file
        if drawing:
            drawing.save()


        self.logger.write('%s Tracks with large spatial uncertainties found (%s%%)' % (
            largeUncertaintyCount, NumericUtils.roundToOrder(
                100.0*float(largeUncertaintyCount)/float(len(self._tracks)), -1) ))

        self._largeUncCsv.save()
        self._tracks = []
開發者ID:sernst,項目名稱:Cadence,代碼行數:104,代碼來源:SpatialUncertaintyStage.py

示例9: _process

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _process(self):
        """_processDeviations doc..."""
        errors  = []

        for entry in self.entries:
            if 'fractional' in entry:
                errors.append(entry['fractional'])

        res = NumericUtils.getMeanAndDeviation(errors)
        self.logger.write('Fractional Pace Error %s' % res.label)

        label = 'Fractional Pace Errors'
        d     = errors
        self._paths.append(self._makePlot(
            label=label,
            data=d,
            histRange=(-1.0, 1.0)))
        self._paths.append(self._makePlot(
            label=label,
            data=d,
            isLog=True,
            histRange=(-1.0, 1.0)))

        # noinspection PyUnresolvedReferences
        d = np.absolute(np.array(d))
        self._paths.append(self._makePlot(
            label='Absolute %s' % label,
            data=d,
            histRange=(0.0, 1.0) ))
        self._paths.append(self._makePlot(
            label='Absolute %s' % label,
            data=d,
            isLog=True,
            histRange=(0.0, 1.0) ))

        highDeviationCount = 0

        for entry in self.entries:
            if 'measured' not in entry:
                # entry['drawFunc']('purple')
                continue

            if entry['deviation'] > 2.0:
                entry['drawFunc']('red')
                highDeviationCount += 1
            else:
                entry['drawFunc'](
                    'black' if abs(entry['deviation']) < 2.0 else '#FFAAAA')

            track = entry['track']
            delta = NumericUtils.roundToSigFigs(100.0*abs(entry['delta']), 3)

            pairTrack = entry.get('pairTrack')
            if pairTrack:
                pairedFingerprint = pairTrack.fingerprint
                pairedUid         = pairTrack.uid
            else:
                pairedFingerprint = ''
                pairedUid         = ''

            self._csv.addRow({
                'fingerprint':track.fingerprint,
                'uid':track.uid,
                'measured':entry['measured'].label,
                'entered':entry['entered'].label,
                'dev':entry['deviation'],
                'delta':delta,
                'pairedUid':pairedUid,
                'pairedFingerprint':pairedFingerprint})

        for sitemap in self.owner.getSitemaps():
            # Remove drawing from the sitemap cache and save the drawing file
            try:
                sitemap.cache.extract('drawing').save()
            except Exception:
                self.logger.write('[WARNING]: No sitemap saved for %s-%s' % (
                    sitemap.name, sitemap.level))

        if not self._csv.save():
            self.logger.write(
                '[ERROR]: Failed to save CSV file %s' % self._csv.path)

        if not self._errorCsv.save():
            self.logger.write(
                '[ERROR]: Failed to save CSV file %s' % self._errorCsv.path)

        percentage = NumericUtils.roundToOrder(
            100.0*float(highDeviationCount)/float(len(self.entries)), -2)
        self.logger.write('%s significant %s (%s%%)' % (
            highDeviationCount,
            label.lower(),
            percentage))
        if percentage > (100.0 - 95.45):
            self.logger.write(
                '[WARNING]: Large deviation count exceeds normal ' +
                'distribution expectations.')
開發者ID:sernst,項目名稱:Cadence,代碼行數:98,代碼來源:PaceLengthStage.py

示例10: _analyzeTrackSeries

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
    def _analyzeTrackSeries(self, series, trackway, sitemap):

        if len(series.tracks) < 2:
            # At least two tracks are required to make the comparison
            return

        for track in series.tracks:
            fieldAngle = Angle(
                degrees=track.rotationMeasured \
                    if track.rotationMeasured \
                    else  0.0)
            dataAngle  = Angle(degrees=track.rotation)
            strideLine = StrideLine(track=track, series=series)

            if track.hidden or strideLine.pairTrack.hidden:
                continue

            try:
                strideLine.vector.normalize()
            except ZeroDivisionError:
                pair = strideLine.pairTrack
                self.logger.write([
                    '[ERROR]: Stride line was a zero length vector',
                    'TRACK: %s (%s, %s) [%s]' % (
                        track.fingerprint,
                        NumericUtils.roundToSigFigs(track.x, 3),
                        NumericUtils.roundToSigFigs(track.z, 3),
                        track.uid),
                    'PAIRING: %s (%s, %s) [%s]' % (
                        pair.fingerprint,
                        NumericUtils.roundToSigFigs(pair.x, 3),
                        NumericUtils.roundToSigFigs(pair.z, 3),
                        pair.uid) ])
                continue

            axisAngle = strideLine.angle
            if track.left:
                fieldAngle.radians += axisAngle.radians
            else:
                fieldAngle.radians = axisAngle.radians - fieldAngle.radians

            # Adjust field angle into range [-180, 180]
            fieldAngle.constrainToRevolution()
            if fieldAngle.degrees > 180.0:
                fieldAngle.degrees -= 360.0

            fieldAngleUnc = Angle(degrees=5.0)
            fieldAngleUnc.radians += \
                0.03/math.sqrt(1.0 - math.pow(strideLine.vector.x, 2))
            fieldDeg = NumericUtils.toValueUncertainty(
                value=fieldAngle.degrees,
                uncertainty=fieldAngleUnc.degrees)

            # Adjust data angle into range [-180, 180]
            dataAngle.constrainToRevolution()
            if dataAngle.degrees > 180.0:
                dataAngle.degrees -= 360.0

            dataAngleUnc = Angle(degrees=track.rotationUncertainty)
            dataDeg = NumericUtils.toValueUncertainty(
                value=dataAngle.degrees,
                uncertainty=dataAngleUnc.degrees)

            angle1 = Angle(degrees=dataDeg.value)
            angle2 = Angle(degrees=fieldDeg.value)

            # fill color for the disks to be added to the map are based on
            # diffDeg
            diffDeg = NumericUtils.toValueUncertainty(
                value=angle1.differenceBetween(angle2).degrees,
                uncertainty=min(90.0, math.sqrt(
                    math.pow(dataAngleUnc.degrees, 2) +
                    math.pow(fieldAngleUnc.degrees, 2))) )

            self._diffs.append(diffDeg.value)

            deviation = diffDeg.value/diffDeg.uncertainty
            self.deviations[track.uid] = diffDeg

            # for now, convert +/- 180 headings to 0-360, using e and m
            # comment the next four lines toggle comments for entered and
            # measured below to revert
            e = dataDeg.value
            m = fieldDeg.value
            if e < 0.0:
                e += 360.0
            if m < 0.0:
                m += 360.0

            data = dict(
                uid=track.uid,
                fingerprint=track.fingerprint,
                entered=str(e),
                measured=str(m),
                delta=abs(diffDeg.value),
                deviation=deviation,
                relative=NumericUtils.roundToOrder(track.rotationMeasured, -2),
                axis=NumericUtils.roundToOrder(axisAngle.degrees, -2),
                axisPairing='NEXT' if strideLine.isNext else 'PREV')
            self._csv.createRow(**data)
#.........這裏部分代碼省略.........
開發者ID:sernst,項目名稱:Cadence,代碼行數:103,代碼來源:RotationStage.py

示例11: value

# 需要導入模塊: from pyaid.number.NumericUtils import NumericUtils [as 別名]
# 或者: from pyaid.number.NumericUtils.NumericUtils import roundToOrder [as 別名]
 def value(self):
     uncertainty = self.uncertainty
     order       = NumericUtils.orderOfLeastSigFig(uncertainty)
     return NumericUtils.roundToOrder(self._raw, order)
開發者ID:sernst,項目名稱:PyAid,代碼行數:6,代碼來源:ValueUncertainty.py


注:本文中的pyaid.number.NumericUtils.NumericUtils.roundToOrder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。