本文整理匯總了Python中pulp.LpProblem.writeLP方法的典型用法代碼示例。如果您正苦於以下問題:Python LpProblem.writeLP方法的具體用法?Python LpProblem.writeLP怎麽用?Python LpProblem.writeLP使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pulp.LpProblem
的用法示例。
在下文中一共展示了LpProblem.writeLP方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_into_lp_problem
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
def make_into_lp_problem(good_for, N):
"""
Helper function for solve_with_lp_and_reduce()
N --- number of isoform sequences
good_for --- dict of <isoform_index> --> list of matched paths index
"""
prob = LpProblem("The Whiskas Problem",LpMinimize)
# each good_for is (isoform_index, [list of matched paths index])
# ex: (0, [1,2,4])
# ex: (3, [2,5])
variables = [LpVariable(str(i),0,1,LpInteger) for i in xrange(N)]
# objective is to minimize sum_{Xi}
prob += sum(v for v in variables)
# constraints are for each isoform, expressed as c_i * x_i >= 1
# where c_i = 1 if x_i is matched for the isoform
# ex: (0, [1,2,4]) becomes t_0 = x_1 + x_2 + x_4 >= 1
for t_i, p_i_s in good_for:
#c_i_s = [1 if i in p_i_s else 0 for i in xrange(N)]
prob += sum(variables[i]*(1 if i in p_i_s else 0) for i in xrange(N)) >= 1
prob.writeLP('cogent.lp')
return prob
示例2: pe185
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
def pe185():
"""
Modelling as an integer programming problem.
Then using PuLP to solve it. It's really fast, just 0.24 seconds.
For details, see https://pythonhosted.org/PuLP/index.html
"""
from pulp import LpProblem, LpVariable, LpMinimize, LpInteger, lpSum, value
constraints = [
('2321386104303845', 0),
('3847439647293047', 1),
('3174248439465858', 1),
('8157356344118483', 1),
('6375711915077050', 1),
('6913859173121360', 1),
('4895722652190306', 1),
('5616185650518293', 2),
('4513559094146117', 2),
('2615250744386899', 2),
('6442889055042768', 2),
('2326509471271448', 2),
('5251583379644322', 2),
('2659862637316867', 2),
('5855462940810587', 3),
('9742855507068353', 3),
('4296849643607543', 3),
('7890971548908067', 3),
('8690095851526254', 3),
('1748270476758276', 3),
('3041631117224635', 3),
('1841236454324589', 3)
]
VALs = map(str, range(10))
LOCs = map(str, range(16))
choices = LpVariable.dicts("Choice", (LOCs, VALs), 0, 1, LpInteger)
prob = LpProblem("pe185", LpMinimize)
prob += 0, "Arbitrary Objective Function"
for s in LOCs:
prob += lpSum([choices[s][v] for v in VALs]) == 1, ""
for c, n in constraints:
prob += lpSum([choices[str(i)][v] for i,v in enumerate(c)]) == n, ""
prob.writeLP("pe185.lp")
prob.solve()
res = int(''.join(v for s in LOCs for v in VALs if value(choices[s][v])))
# answer: 4640261571849533
return res
示例3: TransProblem
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
class TransProblem(object):
def __init__(self, home_list, work_list, util_matrix):
""" Input a list of utils
utils = [ #Works
#1 2 3 4 5
[2,4,5,2,1],#A Homes
[3,1,3,2,3] #B
]
"""
self.util_matrix = util_matrix
self.homes = dict((home, home.houses) for home in home_list)
self.works = dict((work, work.jobs) for work in work_list)
self.utils = makeDict([home_list, work_list], util_matrix, 0)
# Creates the 'prob' variable to contain the problem data
self.prob = LpProblem("Residential Location Choice Problem", LpMinimize)
# Creates a list of tuples containing all the possible location choices
self.choices = [(h, w) for h in self.homes for w in self.works.keys()]
# A dictionary called 'volumes' is created to contain the referenced variables(the choices)
self.volumes = LpVariable.dicts("choice", (self.homes, self.works), 0, None, LpContinuous)
# The objective function is added to 'prob' first
self.prob += (
lpSum([self.volumes[h][w] * self.utils[h][w] for (h, w) in self.choices]),
"Sum_of_Transporting_Costs",
)
# The supply maximum constraints are added to prob for each supply node (home)
for h in self.homes:
self.prob += (
lpSum([self.volumes[h][w] for w in self.works]) <= self.homes[h],
"Sum_of_Products_out_of_Home_%s" % h,
)
# The demand minimum constraints are added to prob for each demand node (work)
for w in self.works:
self.prob += (
lpSum([self.volumes[h][w] for h in self.homes]) >= self.works[w],
"Sum_of_Products_into_Work%s" % w,
)
def solve(self):
# The problem data is written to an .lp file
self.prob.writeLP("ResidentialLocationChoiceProblem.lp")
# The problem is solved using PuLP's choice of Solver
self.prob.solve(solvers.GLPK())
# print the utility matrix
print "Utility Matrix", self.util_matrix
# The status of the solution is printed to the screen
print "Status:", LpStatus[self.prob.status]
# The optimised objective function value is printed to the screen
print "Total Utility = ", value(self.prob.objective)
def get_solution(self):
# put the solution variables into a dict
sol_var = {}
for vol in self.prob.variables():
sol_var[vol.name] = vol.varValue
# construct the solution dict
opt_sol = {}
for home in self.homes:
for work in self.works:
key = "choice" + "_" + str(home) + "_" + str(work)
opt_sol[(work, home)] = sol_var[key]
print (work, home), opt_sol[(work, home)]
return opt_sol
示例4: __init__
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
class LPSolver:
'''
LP solver class
Used for solving LP and MILP problems
'''
def __init__(self,name='analysis',verbose=False):
self.lpProblem = LpProblem()
self.lpVariables = {}
self.lpObjective = {}
self.predictionMap = {}
self.objectiveValue = None
self.rowNames= []
self.columnNames= []
self.configFile = ''
self.statusCode = None
self.verbose = verbose
self.useLimitTag = False
self.mpsLogFile = False
self.ignoreBadReferences = False
self.Mip = True
self.scip_path = ":" + os.environ["HOME"] + "/bin"
def _parseSCIPLog(self, fileName):
'''
Parse result of SCIP analysis.
This section needs a much more solid testing as it key interface with the solver
but often solver errors are dropped when they occur with no / minimal warnings.
@var fileName: name and directory information of file being parsed, usually a temp file
@type fileName: string
@return: (values of fluxes, value of objective function, status of optimization)
@rtype: (dict,float,string)
'''
fileHandle = open(fileName, 'r')
location = 0
line = fileHandle.readline()
while not line.startswith('SCIP Status :'):
if line.startswith('Syntax error'):
print "SCIP parsing syntax error: %s" % line
line = fileHandle.readline()
print line
ilocation = fileHandle.tell()
if location == ilocation:
print "failed to read file %s" %(fileName)
return ({},0.0,"failed to read file")
location = ilocation
line = fileHandle.readline()
m = re.match('[\w\s:]*\[([\w\s]*)\]', line)
statusString = m.group(1)
objectiveValue = None
result = dict()
if statusString == 'optimal solution found':
line = fileHandle.readline()
while not line.startswith('objective value:'):
#Good place to check all the features of the solution.
if line.startswith('solution violates'):
print "Error solving optimization [%s]" % line
ilocation = fileHandle.tell()
if location == ilocation:
print "failed to read file %s" %(fileName)
return ({},0.0,"failed to read file")
line = fileHandle.readline()
m = re.match('objective value:\s+([\S]+)', line)
objectiveValue = float(m.group(1))
line = fileHandle.readline()
while not line.strip() == '':
m = re.match('([\S]+)\s+([\S]+)', line)
name = m.group(1)
result[name] = float(m.group(2))
line = fileHandle.readline()
fileHandle.close()
return (result, objectiveValue, statusString)
def writeMPS(self,fileName):
"""
@param fileName: name of file
@type fileName: String
"""
self.lpProblem.writeMPS(fileName)
return True
def writeLP(self,fileName):
"""
@param fileName: name of file
@type fileName: String
"""
self.lpProblem.writeLP(fileName,writeSOS=0)
#.........這裏部分代碼省略.........
示例5: set
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
# labels. For each such set, if every underlying label has a non-zero
# allocation, then the allocations to all the labels must be added to
# the scenario loss
scenario2labels = {i : set() for i in labels}
for label_set in allcombinations(nonzeros, npoisoned):
scenario = 0
for label in label_set:
scenario |= label
for label in label_set:
scenario2labels[scenario].add(label)
for scenario in labels:
prob += scenario_loss[scenario] == lpSum(allocs[label0] for label0 in scenario2labels[scenario])
prob.writeLP("drunk_mice.lp")
prob.solve()
alloc = [0] * len(labels)
for l in nonzeros:
alloc[l] = int(allocs[l].value())
print "".join([chr(i) for i in alloc]).encode("base64")
"""
Kw0NBQ0EBQUMBQUFBQUGAAwFBQUFBQUABQUFAAUAAAAMBgUFBQYFAAUEBQAFAAAABQUFAAUAAAAF
AAAAAAAAAA0FBQUFBQUABQYFAAUAAAAFBQUABQAAAAUAAAAAAAAABQUFAAUAAAAFAAAAAAAAAAUA
AAAAAAAAAAAAAAAAAAAMBQUFBQUFAAUFBAAFAAAABAUGAAUAAAAFAAAAAAAAAAUFBQAFAAAABgAA
AAAAAAAFAAAAAAAAAAAAAAAAAAAABQUGAAUAAAAFAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAFAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FBQUFBQUABQUFAAUAAAAGBQUABQAAAAUAAAAA
AAAABQUFAAUAAAAGAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAFBQUABQAAAAUAAAAAAAAABQAAAAAA
AAAAAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQUFAAUAAAAFAAAAAAAA
示例6: run
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
def run(scenario_id):
# read data from scenario_id
coll = get_collection('scenario').find_one(
{'_id': ObjectId(scenario_id)})
fund = coll['fund']
products = []
for prod_dict in coll['products']:
product = Product(prod_dict['name'], prod_dict['lowerLimit'],
prod_dict['salePrice'])
product.discounts.append({'threshold': 0, 'discount': 1})
for discount in prod_dict['discounts']:
product.discounts.append(discount)
products.append(product)
for prod in products:
prod.x = [LpVariable('x_{0}{1}'.format(prod.name, i + 1), 0)
for i in range(len(prod.discounts))]
prod.y = [LpVariable('y_{0}{1}'.format(prod.name, i + 1), cat=LpBinary)
for i in range(len(prod.discounts))]
problem = LpProblem('MVP_{0}'.format(scenario_id), sense=LpMaximize)
mv_obj_var = LpVariable('MV_Obj')
y_obj_var = LpVariable('y_Obj')
problem += mv_obj_var - y_obj_var
# Objective functions
problem += lpSum([prod.sale_price * prod.x[i] for prod in products
for i in range(len(prod.x))]) == mv_obj_var
problem += lpSum([prod.y[i] for prod in products
for i in range(len(prod.y))]) == y_obj_var
# End of Obj
# Constraints
# sum(b_ij * X_ij) == fund
problem += lpSum(
[prod.sale_price * prod.discounts[i]['discount'] * prod.x[i]
for prod in products for i in range(len(prod.discounts))]) == fund
for prod in products:
expr = LpAffineExpression()
n = len(prod.discounts)
for i in range(n):
expr += prod.x[i]
# M * y_ij >= x_ij
problem += BIG_M * prod.y[i] >= prod.x[i]
if i + 1 < n:
rhs = prod.discounts[i + 1]['threshold'] \
- prod.discounts[i]['threshold'] - SLACK
# x_ij <= C_ij+1 - C_ij - 1
problem += prod.x[i] <= rhs
if i > 0:
rhs = prod.discounts[i]['threshold'] \
- prod.discounts[i - 1]['threshold'] - SLACK
# M * (1 - y_ij) >= C_ij - C_ij-1 - X_ij-1 - 1
problem += BIG_M * (1 - prod.y[i]) >= rhs - prod.x[i - 1]
if len(expr) > 0:
# sum(X_i) >= lower_limit
problem += expr >= prod.lower_limit
problem.writeLP('C:\\Projects\Python\{0}.lp'.format(problem.name))
problem.solve()
if problem.status == LpStatusOptimal:
with open('C:\\Projects\Python\{0}.sol'.format(problem.name),
'w') as sol:
sol.write('Solution of {0}\n'.format(problem.name))
sol.write('Obj value: {0}\n'.format(problem.objective.value()))
sol.writelines(['{0} = {1}\n'.format(v.name, v.value())
for v in problem.variables()])
return LpStatus[problem.status]
示例7: opAss_LP
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
#.........這裏部分代碼省略.........
# calculation of Delta_Ass
for d in Delta_Assignment:
if OldAss[(d[0],d[1])] == 1:
prob += lpSum(OldAss[(d[0],d[1])] - PB_ass[(d[0],d[1])]) <= Delta_Ass[(d[0],d[1])]
else:
prob += lpSum(PB_ass[(d[0],d[1])] - OldAss[(d[0],d[1])]) <= Delta_Ass[(d[0],d[1])]
# 4th obj = fill a subline
if weightFactors[3]>0:
# verify whether there are machines active in the sublines
subline={0:{'noMach':0, 'WIP':0}, 1:{'noMach':0, 'WIP':0}}
for mach in machineList:
if machineList[mach]['stationID'] in [0,1,2]:
subline[machineList[mach]['machineID']]['noMach'] += 1
subline[machineList[mach]['machineID']]['WIP'] += machineList[mach]['WIP']
chosenSubLine = False
# choose subline to be filled first
if subline[0]['noMach'] == 3:
# case when both sublines are fully active
if subline[1]['noMach'] == 3:
if subline[0]['WIP'] >= subline [1]['WIP']:
chosenSubLine = 1
else:
chosenSubLine = 2
else:
chosenSubLine = 1
elif subline[1]['noMach'] == 3:
chosenSubLine = 2
#create variable for the chosen subline
if chosenSubLine:
chosenSubLine -= 1
subLine = LpVariable('SubL', lowBound=0)
sub = []
for station in range(3):
mach = Tool[station][chosenSubLine].name #'St'+str(station)+'_M'+str(chosenSubLine)
for oper in PBlist:
if station in PBskills[oper]:
sub.append(PB_ass[(oper,mach)])
prob += lpSum(sub) >= subLine
chosenSubLine+=1
obj.append(subLine*weightFactors[3]/3.0)
# 5th objective: prioritise machines with furthest in time last assignment
LastAssignmentSum = float(sum([machineList[mach]['lastAssignment'] for mach in machines ]))
if LastAssignmentSum > 0 and weightFactors[4]>0:
obj += [machineList[mach]['lastAssignment']*PB_ass[(oper,mach)]*weightFactors[4]/float(LastAssignmentSum) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]]
# 6th objective: max the number of pb assigned
if weightFactors[5]>0:
obj += [PB_ass[(oper,mach)]*weightFactors[5]/float(len(PBlist)) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]]
prob += lpSum(obj)
# constraint 1: # operators assigned to a station <= 1
for machine in machines:
prob += lpSum([PB_ass[(oper,machine)] for oper in PBlist if machineList[machine]['stationID'] in PBskills[oper]]) <= 1
# constraint 2: # machines assigned to an operator <= 1
for operator in PBlist:
prob += lpSum([PB_ass[(operator,machine)] for machine in machines if machineList[machine]['stationID'] in PBskills[operator]]) <= 1
# write the problem data to an .lp file.
prob.writeLP("PBassignment.lp")
prob.solve()
if LpStatus[prob.status] != 'Optimal':
print 'WARNING: LP solution ', LpStatus[prob.status]
PBallocation = {}
for mach in machines:
for oper in PBlist:
if machineList[mach]['stationID'] in PBskills[oper]:
if PB_ass[(oper,mach)].varValue > 0.00001:
PBallocation[oper]=mach
files = glob.glob('*.mps')
for f in files:
os.remove(f)
files = glob.glob('*.lp')
for f in files:
os.remove(f)
G.totalPulpTime+=time.time()-startPulp
return PBallocation
示例8: OptKnock
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import writeLP [as 別名]
#.........這裏部分代碼省略.........
self.create_prob(sense=LpMaximize, use_glpk=use_glpk)
self.add_primal_variables_and_constraints()
self.add_dual_variables_and_constraints()
self.add_optknock_variables_and_constraints()
# add the objective of maximizing the flux in the target reaction
self.prob.setObjective(self.var_v[self.r_target])
self.add_knockout_bounds(ko_candidates, num_deletions)
def prepare_optslope(self, target_reaction_id, ko_candidates=None,
num_deletions=5, use_glpk=False):
# add the objective of maximizing the flux in the target reaction
self.r_target = self.get_reaction_by_id(target_reaction_id)
# set biomass maximum to 0
self.r_biomass.lower_bound = 0
self.r_biomass.upper_bound = 0
self.r_target.lower_bound = 0
self.r_target.upper_bound = 0
self.create_prob(sense=LpMaximize, use_glpk=use_glpk)
self.add_primal_variables_and_constraints()
self.add_dual_variables_and_constraints()
self.add_optknock_variables_and_constraints()
# set the objective as maximizing the shadow price of v_target upper bound
self.prob.setObjective(self.var_w_U[self.r_target] - self.var_w_L[self.r_target])
self.add_knockout_bounds(ko_candidates, num_deletions)
def write_linear_problem(self, fname):
self.prob.writeLP(fname)
def solve(self):
self.prob.solve()
if self.prob.status != LpStatusOptimal:
if self.verbose:
print "LP was not solved because: ", LpStatus[self.prob.status]
self.solution = Solution(None)
else:
self.solution = Solution(self.prob.objective.value())
if self.has_flux_as_variables:
self.solution.x = [self.var_v[r].varValue for r in self.model.reactions]
self.solution.status = self.prob.status
return self.solution
def get_objective_value(self):
if self.solution.status != LpStatusOptimal:
return None
else:
return self.prob.objective.value()
def print_primal_results(self, short=True):
obj = self.get_objective_value()
if obj is None:
return
print "Objective : %6.3f" % obj
if not short:
print "List of reactions : "
for r in self.model.reactions:
print "%30s (%4g <= v <= %4g) : v = %6.3f" % \
(r.name, r.lower_bound, r.upper_bound, self.var_v[r].varValue)