本文整理匯總了Python中pulp.LpProblem.setObjective方法的典型用法代碼示例。如果您正苦於以下問題:Python LpProblem.setObjective方法的具體用法?Python LpProblem.setObjective怎麽用?Python LpProblem.setObjective使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pulp.LpProblem
的用法示例。
在下文中一共展示了LpProblem.setObjective方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: OptKnock
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import setObjective [as 別名]
class OptKnock(object):
def __init__(self, model, verbose=False):
self.model = deepcopy(model)
self.verbose = verbose
# locate the biomass reaction
biomass_reactions = [r for r in self.model.reactions
if r.objective_coefficient != 0]
if len(biomass_reactions) != 1:
raise Exception('There should be only one single biomass reaction')
self.r_biomass = biomass_reactions[0]
self.has_flux_as_variables = False
def create_prob(self, sense=LpMaximize, use_glpk=False):
# create the LP
self.prob = LpProblem('OptKnock', sense=sense)
if use_glpk:
self.prob.solver = solvers.GLPK()
else:
self.prob.solver = solvers.CPLEX(msg=self.verbose)
if not self.prob.solver.available():
raise Exception("CPLEX not available")
def add_primal_variables_and_constraints(self):
# create the continuous flux variables (can be positive or negative)
self.var_v = {}
for r in self.model.reactions:
self.var_v[r] = LpVariable("v_%s" % r.id,
lowBound=r.lower_bound,
upBound=r.upper_bound,
cat=LpContinuous)
# this flag will be used later to know if to expect the flux
# variables to exist
self.has_flux_as_variables = True
# add the mass-balance constraints to each of the metabolites (S*v = 0)
for m in self.model.metabolites:
S_times_v = LpAffineExpression([(self.var_v[r], r.get_coefficient(m))
for r in m.reactions])
self.prob.addConstraint(S_times_v == 0, 'mass_balance_%s' % m.id)
def add_dual_variables_and_constraints(self):
# create dual variables associated with stoichiometric constraints
self.var_lambda = dict([(m, LpVariable("lambda_%s" % m.id,
lowBound=-M,
upBound=M,
cat=LpContinuous))
for m in self.model.metabolites])
# create dual variables associated with the constraints on the primal fluxes
self.var_w_U = dict([(r, LpVariable("w_U_%s" % r.id, lowBound=0, upBound=M, cat=LpContinuous))
for r in self.model.reactions])
self.var_w_L = dict([(r, LpVariable("w_L_%s" % r.id, lowBound=0, upBound=M, cat=LpContinuous))
for r in self.model.reactions])
# add the dual constraints:
# S'*lambda + w_U - w_L = c_biomass
for r in self.model.reactions:
S_times_lambda = LpAffineExpression([(self.var_lambda[m], coeff)
for m, coeff in r._metabolites.iteritems()
if coeff != 0])
row_sum = S_times_lambda + self.var_w_U[r] - self.var_w_L[r]
self.prob.addConstraint(row_sum == r.objective_coefficient, 'dual_%s' % r.id)
def prepare_FBA_primal(self, use_glpk=False):
"""
Run standard FBA (primal)
"""
self.create_prob(sense=LpMaximize, use_glpk=use_glpk)
self.add_primal_variables_and_constraints()
self.prob.setObjective(self.var_v[self.r_biomass])
def prepare_FBA_dual(self, use_glpk=False):
"""
Run shadow FBA (dual)
"""
self.create_prob(sense=LpMinimize, use_glpk=use_glpk)
self.add_dual_variables_and_constraints()
w_sum = LpAffineExpression([(self.var_w_U[r], r.upper_bound)
for r in self.model.reactions if r.upper_bound != 0] +
[(self.var_w_L[r], -r.lower_bound)
for r in self.model.reactions if r.lower_bound != 0])
self.prob.setObjective(w_sum)
def get_reaction_by_id(self, reaction_id):
if reaction_id not in self.model.reactions:
return None
reaction_ind = self.model.reactions.index(reaction_id)
reaction = self.model.reactions[reaction_ind]
return reaction
def add_optknock_variables_and_constraints(self):
# create the binary variables indicating which reactions knocked out
self.var_y = dict([(r, LpVariable("y_%s" % r.id, cat=LpBinary))
for r in self.model.reactions])
#.........這裏部分代碼省略.........
示例2: solve
# 需要導入模塊: from pulp import LpProblem [as 別名]
# 或者: from pulp.LpProblem import setObjective [as 別名]
#.........這裏部分代碼省略.........
if col.together is not None:
if col.together:
# For {n}: cells that are at least n appart cannot be both blue.
# Example: For {3}, the configurations X??X, X???X, X????X, ... are impossible.
for span in range(col.value, len(col.members)):
for start in range(len(col.members)-span):
problem += lpSum([get_var(col.members[start]), get_var(col.members[start+span])]) <= 1
else:
# For -n-, the sum of any range of n cells may contain at most n-1 blues
for offset in range(len(col.members)-col.value+1):
problem += lpSum(get_var(col.members[offset+i]) for i in range(col.value)) <= col.value-1
# Constraints from cell number information
for cell in known:
# If the displays a number, the sum of its neighbourhood (radius 1 or 2) is known
if cell.value is not None:
problem += lpSum(get_var(neighbour) for neighbour in cell.members) == cell.value
# Additional togetherness information available?
# Note: Only relevant if value between 2 and 4.
# In fact: The following code would do nonsense for 0,1,5,6!
if cell.together is not None and cell.value >= 2 and cell.value <= 4:
# Note: Cells are ordered clockwise.
# Convenience: Have it wrap around.
m = cell.members+cell.members
if cell.together:
# note how togetherness is equivalent to the following
# two patterns not occuring: "-X-" and the "X-X"
# in other words: No lonely blue cell and no lonely gap
for i in range(len(cell.members)):
# No lonely cell condition:
# Say m[i] is a blue.
# Then m[i-1] or m[i+1] must be blue.
# That means: -m[i-1] +m[i] -m[i+1] <= 0
# Note that m[i+1] and m[i-1] only count
# if they are real neighbours.
cond = get_var(m[i])
if m[i].is_neighbor(m[i-1]):
cond -= get_var(m[i-1])
if m[i].is_neighbor(m[i+1]):
cond -= get_var(m[i+1])
# no isolated cell
problem += cond <= 0
# no isolated gap (works by a similar argument)
problem += cond >= -1
else:
# -n-: any circular range of n cells contains at most n-1 blues.
for i in range(len(cell.members)):
# the range m[i], ..., m[i+n-1] may not all be blue if they are consecutive
if all(m[i+j].is_neighbor(m[i+j+1]) for j in range(cell.value-1)):
problem += lpSum(get_var(m[i+j]) for j in range(cell.value)) <= cell.value-1
# First, get any solution.
# Default solver can't handle no objective, so invent one:
spam = LpVariable('spam', 0, 1, 'binary')
problem += (spam == 1)
problem.setObjective(spam) # no optimisation function yet
problem.solve(solver)
def get_true_false_classes():
true_set = set()
false_set = set()
for rep, size in classes.items():
if value(get_var(rep)) == 0:
false_set.add(rep)
elif value(get_var(rep)) == size:
true_set.add(rep)
return true_set, false_set
# get classes that are fully true or false
# they are candidates for solvable classes
true, false = get_true_false_classes()
while true or false:
# Now try to vary as much away from the
# initial solution as possible:
# We try to make the variables True, that were False before
# and vice versa. If no change could be achieved, then
# the remaining variables have their unique possible value.
problem.setObjective(lpSum(get_var(t) for t in true)-lpSum(get_var(f) for f in false))
problem.solve(solver)
# all true variables stayed true and false stayed false?
# Then they have their unique value and we are done!
if value(problem.objective) == sum(classes[rep] for rep in true):
for tf_set, kind in [(true, Cell.full), (false, Cell.empty)]:
for rep in tf_set:
for cell in unknown:
if rep_of[cell] is rep:
yield cell, kind
return
true_new, false_new = get_true_false_classes()
# remember only those classes that subbornly kept their pure trueness/falseness
true &= true_new
false &= false_new