本文整理匯總了Python中polynomial.Polynomial.coordinate方法的典型用法代碼示例。如果您正苦於以下問題:Python Polynomial.coordinate方法的具體用法?Python Polynomial.coordinate怎麽用?Python Polynomial.coordinate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類polynomial.Polynomial
的用法示例。
在下文中一共展示了Polynomial.coordinate方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_spline_epipolar
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_spline_epipolar():
# Construct symbolic problem
num_landmarks = 10
num_frames = 3
num_imu_readings = 8
bezier_degree = 4
out = 'out/epipolar_accel_bezier3'
if not os.path.isdir(out):
os.mkdir(out)
# Both splines should start at 0,0,0
frame_times = np.linspace(0, .9, num_frames)
imu_times = np.linspace(0, 1, num_imu_readings)
true_rot_controls = np.random.rand(bezier_degree-1, 3)
true_pos_controls = np.random.rand(bezier_degree-1, 3)
true_landmarks = np.random.randn(num_landmarks, 3)
true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
true_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
true_qs = map(cayley_mat, true_cayleys)
true_rotations = map(cayley, true_cayleys)
true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
for R,p in zip(true_rotations, true_positions)]
true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
p0 = true_positions[0]
q0 = true_qs[0]
for i in range(1, num_frames):
p = true_positions[i]
q = true_qs[i]
E = essential_matrix(q0, p0, q, p)
for j in range(num_landmarks):
z = true_projections[i][j]
z0 = true_projections[0][j]
#print np.dot(z, np.dot(E, z0))
# construct symbolic versions of the above
s_offs = 0
p_offs = s_offs + (bezier_degree-1)*3
num_vars = p_offs + (bezier_degree-1)*3
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_rot_controls = np.reshape(sym_vars[s_offs:s_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
sym_pos_controls = np.reshape(sym_vars[p_offs:p_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
true_vars = np.hstack((true_rot_controls.flatten(),
true_pos_controls.flatten()))
residuals = []
# Accel residuals
for i in range(num_imu_readings):
sym_a = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
residual = sym_a - true_accels[i]
residuals.extend(residual)
# Epipolar residuals
p0 = np.zeros(3)
R0 = np.eye(3)
for i in range(1, num_frames):
sym_s = zero_offset_bezier(sym_rot_controls, frame_times[i])
sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
sym_q = cayley_mat(sym_s)
#sym_q = np.eye(3) * (1. - np.dot(sym_s, sym_s)) + 2.*skew(sym_s) + 2.*np.outer(sym_s, sym_s)
sym_E = essential_matrix(R0, p0, sym_q, sym_p)
for j in range(num_landmarks):
z = true_projections[i][j]
z0 = true_projections[0][j]
residual = np.dot(z, np.dot(sym_E, z0))
residuals.append(residual)
print 'Num vars:',num_vars
print 'Num residuals:',len(residuals)
print 'Residuals:', len(residuals)
cost = Polynomial(num_vars)
for r in residuals:
cost += r*r
print ' %f (degree=%d, length=%d)' % (r(*true_vars), r.total_degree, len(r))
print '\nCost:'
print ' Num terms: %d' % len(cost)
print ' Degree: %d' % cost.total_degree
print '\nGradients:'
gradients = cost.partial_derivatives()
for gradient in gradients:
print ' %d (degree=%d, length=%d)' % (gradient(*true_vars), gradient.total_degree, len(gradient))
jacobians = [r.partial_derivatives() for r in residuals]
J = np.array([[J_ij(*true_vars) for J_ij in row] for row in jacobians])
#.........這裏部分代碼省略.........
示例2: run_position_only_spline_epipolar
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_position_only_spline_epipolar():
#
# Construct ground truth
#
num_landmarks = 50
num_frames = 4
num_imu_readings = 80
bezier_degree = 4
out = 'out/position_only_bezier3'
print 'Num landmarks:', num_landmarks
print 'Num frames:', num_frames
print 'Num IMU readings:', num_imu_readings
print 'Bezier curve degree:', bezier_degree
if not os.path.isdir(out):
os.mkdir(out)
# Both splines should start at 0,0,0
frame_times = np.linspace(0, .9, num_frames)
imu_times = np.linspace(0, 1, num_imu_readings)
true_rot_controls = np.random.rand(bezier_degree-1, 3)
true_pos_controls = np.random.rand(bezier_degree-1, 3)
true_landmarks = np.random.randn(num_landmarks, 3)
true_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
true_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in frame_times])
true_rotations = map(cayley, true_cayleys)
true_imu_cayleys = np.array([zero_offset_bezier(true_rot_controls, t) for t in imu_times])
true_imu_rotations = map(cayley, true_imu_cayleys)
true_gravity = normalized(np.random.rand(3)) * 9.8
true_accel_bias = np.random.rand(3)
true_global_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
true_accels = [np.dot(R, a + true_gravity) + true_accel_bias
for R, a in zip(true_imu_rotations, true_global_accels)]
true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
for R, p in zip(true_rotations, true_positions)]
true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
#
# Construct symbolic versions of the above
#
position_offs = 0
accel_bias_offset = position_offs + (bezier_degree-1)*3
gravity_offset = accel_bias_offset + 3
num_vars = gravity_offset + 3
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])
true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))
assert len(true_vars) == len(sym_vars)
residuals = []
#
# Accel residuals
#
print '\nAccel residuals:'
for i in range(num_imu_readings):
true_R = true_imu_rotations[i]
sym_global_accel = zero_offset_bezier_second_deriv(sym_pos_controls, imu_times[i])
sym_accel = np.dot(true_R, sym_global_accel + sym_gravity) + sym_accel_bias
residual = sym_accel - true_accels[i]
for i in range(3):
print ' Degree of global accel = %d, local accel = %d, residual = %d' % \
(sym_global_accel[i].total_degree, sym_accel[i].total_degree, residual[i].total_degree)
residuals.extend(residual)
#
# Epipolar residuals
#
p0 = np.zeros(3)
R0 = np.eye(3)
for i in range(1, num_frames):
true_s = true_cayleys[i]
true_R = cayley_mat(true_s)
sym_p = zero_offset_bezier(sym_pos_controls, frame_times[i])
sym_E = essential_matrix(R0, p0, true_R, sym_p)
for j in range(num_landmarks):
z = true_projections[i][j]
z0 = true_projections[0][j]
residual = np.dot(z, np.dot(sym_E, z0))
residuals.append(residual)
print '\nNum vars:', num_vars
print 'Num residuals:', len(residuals)
print '\nResiduals:', len(residuals)
cost = Polynomial(num_vars)
for r in residuals:
cost += r*r
#.........這裏部分代碼省略.........
示例3: run_sfm
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_sfm():
# Construct symbolic problem
num_landmarks = 4
num_frames = 2
print 'Num observations: ', num_landmarks * num_frames * 2
print 'Num vars: ', num_frames*6 + num_landmarks*3 + num_frames*num_landmarks
true_landmarks = np.random.randn(num_landmarks, 3)
true_positions = np.random.rand(num_frames, 3)
true_cayleys = np.random.rand(num_frames, 3)
true_qs = map(cayley_mat, true_cayleys)
true_betas = map(cayley_denom, true_cayleys)
true_rotations = [(q/b) for (q,b) in zip(true_qs, true_betas)]
true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
for R,p in zip(true_rotations, true_positions)]
true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
true_alphas = [[np.linalg.norm(zu) for zu in row] for row in true_uprojections]
true_vars = np.hstack((true_cayleys.flatten(),
true_positions.flatten(),
true_landmarks.flatten(),
np.asarray(true_alphas).flatten()))
#true_projection_mat = np.reshape(true_projections, (num_frames, num_landmarks, 2))
for i in range(num_frames):
p = true_positions[i]
q = true_qs[i]
beta = true_betas[i]
for j in range(num_landmarks):
x = true_landmarks[j]
z = true_projections[i][j]
alpha = true_alphas[i][j]
print alpha * beta * z - np.dot(q, x-p)
# construct symbolic versions of the above
s_offs = 0
p_offs = s_offs + num_frames*3
x_offs = p_offs + num_frames*3
a_offs = x_offs + num_landmarks*3
num_vars = a_offs + num_landmarks*num_frames
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+num_frames*3], (num_frames, 3))
sym_positions = np.reshape(sym_vars[p_offs:p_offs+num_frames*3], (num_frames, 3))
sym_landmarks = np.reshape(sym_vars[x_offs:x_offs+num_landmarks*3], (num_landmarks, 3))
sym_alphas = np.reshape(sym_vars[a_offs:], (num_frames, num_landmarks))
residuals = []
for i in range(num_frames):
sym_p = sym_positions[i]
sym_s = sym_cayleys[i]
for j in range(num_landmarks):
sym_x = sym_landmarks[j]
sym_a = sym_alphas[i,j]
true_z = true_projections[i][j]
residual = np.dot(cayley_mat(sym_s), sym_x-sym_p) - sym_a * cayley_denom(sym_s) * true_z
residuals.extend(residual)
print 'Residuals:'
cost = Polynomial(num_vars)
for residual in residuals:
cost += np.dot(residual, residual)
print ' ',residual(*true_vars) #ri.num_vars, len(true_vars)
print '\nGradients:'
gradient = [cost.partial_derivative(i) for i in range(num_vars)]
for gi in gradient:
print gi(*true_vars)
j = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
for r in residuals])
print '\nJacobian singular values:'
print j.shape
u, s, v = np.linalg.svd(j)
print s
print '\nHessian eigenvalues:'
h = np.dot(j.T, j)
print h.shape
print np.linalg.eigvals(h)
示例4: run_epipolar
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_epipolar():
# Construct symbolic problem
num_landmarks = 10
num_frames = 3
true_landmarks = np.random.randn(num_landmarks, 3)
true_positions = np.vstack((np.zeros(3),
np.random.rand(num_frames-1, 3)))
true_cayleys = np.vstack((np.zeros(3),
np.random.rand(num_frames-1, 3)))
true_qs = map(cayley_mat, true_cayleys)
true_rotations = map(cayley, true_cayleys)
true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
for R,p in zip(true_rotations, true_positions)]
true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
p0 = true_positions[0]
q0 = true_qs[0]
for i in range(1, num_frames):
p = true_positions[i]
q = true_qs[i]
E = essential_matrix(q0, p0, q, p)
for j in range(num_landmarks):
z = true_projections[i][j]
z0 = true_projections[0][j]
print np.dot(z, np.dot(E, z0))
# construct symbolic versions of the above
s_offs = 0
p_offs = s_offs + (num_frames-1)*3
num_vars = p_offs + (num_frames-1)*3
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+(num_frames-1)*3], (num_frames-1, 3))
sym_positions = np.reshape(sym_vars[p_offs:p_offs+(num_frames-1)*3], (num_frames-1, 3))
true_vars = np.hstack((true_cayleys[1:].flatten(),
true_positions[1:].flatten()))
residuals = []
p0 = np.zeros(3)
R0 = np.eye(3)
for i in range(1, num_frames):
sym_p = sym_positions[i-1]
sym_s = sym_cayleys[i-1]
sym_q = cayley_mat(sym_s)
sym_E = essential_matrix(R0, p0, sym_q, sym_p)
for j in range(num_landmarks):
z = true_projections[i][j]
z0 = true_projections[0][j]
residual = np.dot(z, np.dot(sym_E, z0))
print 'Residual poly: ',len(residual), residual.total_degree
residuals.append(residual)
print 'Num sym_vars:',num_vars
print 'Num residuals:',len(residuals)
print 'Residuals:', len(residuals)
cost = Polynomial(num_vars)
for residual in residuals:
#cost += np.dot(residual, residual)
print ' ',residual(*true_vars) #ri.num_vars, len(true_vars)
print '\nGradients:'
gradient = [cost.partial_derivative(i) for i in range(num_vars)]
for gi in gradient:
print ' ',gi(*true_vars)
J = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
for r in residuals])
print '\nJacobian singular values:'
print J.shape
U,S,V = np.linalg.svd(J)
print S
print V[-1]
print V[-2]
print '\nHessian eigenvalues:'
H = np.dot(J.T, J)
print H.shape
print np.linalg.eigvals(H)
示例5: main
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def main():
np.random.seed(1)
#
# Construct ground truth
#
num_frames = 5
num_landmarks = 10
num_imu_readings = 8
bezier_degree = 3
out = 'out/full_initialization'
print 'Num landmarks:', num_landmarks
print 'Num frames:', num_frames
print 'Num IMU readings:', num_imu_readings
print 'Bezier curve degree:', bezier_degree
if not os.path.isdir(out):
os.mkdir(out)
# Both splines should start at 0,0,0
frame_times = np.linspace(0, .9, num_frames)
accel_times = np.linspace(0, 1, num_imu_readings)
true_pos_controls = np.random.randn(bezier_degree-1, 3)
true_orient_controls = np.random.randn(bezier_degree-1, 3)
true_landmarks = np.random.randn(num_landmarks, 3)
true_frame_positions = np.array([zero_offset_bezier(true_pos_controls, t) for t in frame_times])
true_frame_cayleys = np.array([zero_offset_bezier(true_orient_controls, t) for t in frame_times])
true_frame_orientations = np.array(map(cayley, true_frame_cayleys))
true_imu_cayleys = np.array([zero_offset_bezier(true_orient_controls, t) for t in accel_times])
true_imu_orientations = np.array(map(cayley, true_imu_cayleys))
true_gravity_magnitude = 9.8
true_gravity = normalized(np.random.rand(3)) * true_gravity_magnitude
true_accel_bias = np.random.randn(3)
true_global_accels = np.array([zero_offset_bezier_second_deriv(true_pos_controls, t) for t in accel_times])
true_accels = np.array([np.dot(R, a + true_gravity) + true_accel_bias
for R, a in zip(true_imu_orientations, true_global_accels)])
true_features = np.array([[normalized(np.dot(R, x-p)) for x in true_landmarks]
for R, p in zip(true_frame_orientations, true_frame_positions)])
true_vars = np.hstack((true_pos_controls.flatten(),
true_orient_controls.flatten(),
true_accel_bias,
true_gravity))
print np.min(true_features.reshape((-1, 3)), axis=0)
print np.max(true_features.reshape((-1, 3)), axis=0)
#
# Add sensor noise
#
accel_noise = 0
feature_noise = 0
observed_features = true_features.copy()
observed_accels = true_accels.copy()
if accel_noise > 0:
observed_accels += np.random.randn(*observed_accels.shape) * accel_noise
if feature_noise > 0:
observed_features += np.random.rand(*observed_features.shape) * feature_noise
#
# Construct symbolic versions of the above
#
num_position_vars = (bezier_degree-1)*3
num_orientation_vars = (bezier_degree-1)*3
num_accel_bias_vars = 3
num_gravity_vars = 3
block_sizes = [num_position_vars, num_orientation_vars, num_accel_bias_vars, num_gravity_vars]
num_vars = sum(block_sizes)
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_pos_controls, sym_orient_controls, sym_accel_bias, sym_gravity = map(np.array, chop(sym_vars, block_sizes))
sym_pos_controls = sym_pos_controls.reshape((-1, 3))
sym_orient_controls = sym_orient_controls.reshape((-1, 3))
assert len(true_vars) == len(sym_vars)
#
# Accel residuals
#
residuals = []
print 'Accel residuals:'
for i, t in enumerate(accel_times):
sym_cayley = zero_offset_bezier(sym_orient_controls, t)
sym_orient = cayley_mat(sym_cayley)
sym_denom = cayley_denom(sym_cayley)
sym_global_accel = zero_offset_bezier_second_deriv(sym_pos_controls, t)
#.........這裏部分代碼省略.........
示例6: run_from_data
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_from_data():
#
# Load data
#
path = Path('/Users/alexflint/Code/spline-initialization/out')
frame_orientation_data = np.loadtxt(str(path / 'frame_orientations.txt'))
frame_timestamps = frame_orientation_data[:, 0]
frame_orientations = frame_orientation_data[:, 1:].reshape((-1, 3, 3))
accel_data = np.loadtxt(str(path / 'accelerometer.txt'))
accel_timestamps = accel_data[:, 0]
accel_readings = accel_data[:, 1:]
accel_orientation_data = np.loadtxt(str(path / 'accel_orientations.txt'))
accel_orientations = accel_orientation_data[:, 1:].reshape((-1, 3, 3))
feature_data = np.loadtxt(str(path / 'features.txt'))
landmarks_ids = sorted(set(feature_data[:, 0].astype(int)))
frame_ids = sorted(set(feature_data[:, 1].astype(int)))
landmark_index_by_id = {idx: i for i, idx in enumerate(landmarks_ids)}
frame_index_by_id = {idx: i for i, idx in enumerate(frame_ids)}
assert len(accel_orientations) == len(accel_readings)
assert len(frame_ids) == len(frame_orientations) == len(frame_timestamps)
num_frames = len(frame_ids)
num_landmarks = len(landmarks_ids)
num_imu_readings = len(accel_readings)
bezier_degree = 4
print 'Num landmarks:', num_landmarks
print 'Num frames:', num_frames
print 'Num IMU readings:', num_imu_readings
print 'Bezier curve degree:', bezier_degree
#
# Make feature table
#
features = np.ones((num_frames, num_landmarks, 2))
features.fill(np.nan)
for landmark_id, frame_id, feature in zip(landmarks_ids, frame_ids, feature_data[:, 2:]):
i = frame_index_by_id[frame_id]
j = landmark_index_by_id[landmark_id]
features[i, j] = feature
feature_mask[i, j] = True
#
# Normalize timestamps to [0,1]
#
begin_time = min(np.min(accel_timestamps), np.min(frame_timestamps))
end_time = max(np.max(accel_timestamps), np.max(frame_timestamps))
accel_timestamps = (accel_timestamps - begin_time) / (end_time - begin_time)
frame_timestamps = (frame_timestamps - begin_time) / (end_time - begin_time)
#
# Construct symbolic versions of the above
#
position_offs = 0
accel_bias_offset = position_offs + (bezier_degree-1)*3
gravity_offset = accel_bias_offset + 3
num_vars = gravity_offset + 3
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])
#
# Compute residuals
#
epipolar_residuals = evaluate_epipolar_residuals(sym_pos_controls, frame_timestamps,
frame_orientations, features, feature_mask)
accel_residuals = evaluate_accel_residuals(sym_pos_controls, sym_accel_bias, sym_gravity,
accel_timestamps, accel_readings, accel_orientations)
residuals = accel_residuals + epipolar_residuals
print '\nNum vars:', num_vars
print 'Num residuals:', len(residuals)
print '\nResiduals:', len(residuals)
cost = Polynomial(num_vars)
for r in residuals:
cost += r*r
print ' degree=%d, length=%d' % (r.total_degree, len(r))
print '\nCost:'
print ' Num terms: %d' % len(cost)
print ' Degree: %d' % cost.total_degree
# Solve
A, b, k = quadratic_form(cost)
estimated_vars = np.squeeze(np.linalg.solve(A*2, -b))
estimated_pos_controls = np.reshape(estimated_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
estimated_positions = np.array([bezier.zero_offset_bezier(estimated_pos_controls, t) for t in frame_timestamps])
estimated_accel_bias = np.asarray(estimated_vars[accel_bias_offset:accel_bias_offset+3])
estimated_gravity = np.asarray(estimated_vars[gravity_offset:gravity_offset+3])
#.........這裏部分代碼省略.........
示例7: run_simulation
# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import coordinate [as 別名]
def run_simulation():
np.random.seed(1)
#
# Construct ground truth
#
num_frames = 5
num_landmarks = 50
num_imu_readings = 80
bezier_degree = 4
out = 'out/position_only_bezier3'
print 'Num landmarks:', num_landmarks
print 'Num frames:', num_frames
print 'Num IMU readings:', num_imu_readings
print 'Bezier curve degree:', bezier_degree
if not os.path.isdir(out):
os.mkdir(out)
# Both splines should start at 0,0,0
frame_times = np.linspace(0, .9, num_frames)
imu_times = np.linspace(0, 1, num_imu_readings)
true_rot_controls = np.random.randn(bezier_degree-1, 3)
true_pos_controls = np.random.randn(bezier_degree-1, 3)
true_landmarks = np.random.randn(num_landmarks, 3)
true_frame_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in frame_times])
true_frame_orientations = np.array(map(cayley, true_frame_cayleys))
true_frame_positions = np.array([bezier.zero_offset_bezier(true_pos_controls, t) for t in frame_times])
true_imu_cayleys = np.array([bezier.zero_offset_bezier(true_rot_controls, t) for t in imu_times])
true_imu_orientations = np.array(map(cayley, true_imu_cayleys))
true_gravity_magnitude = 9.8
true_gravity = normalized(np.random.rand(3)) * true_gravity_magnitude
true_accel_bias = np.random.randn(3)
true_global_accels = np.array([bezier.zero_offset_bezier_second_deriv(true_pos_controls, t) for t in imu_times])
true_accels = np.array([np.dot(R, a + true_gravity) + true_accel_bias
for R, a in zip(true_imu_orientations, true_global_accels)])
true_features = np.array([[normalized(np.dot(R, x-p)) for x in true_landmarks]
for R, p in zip(true_frame_orientations, true_frame_positions)])
print np.min(true_features.reshape((-1, 3)), axis=0)
print np.max(true_features.reshape((-1, 3)), axis=0)
#
# Add sensor noise
#
accel_noise = 0#0.001
feature_noise = 0#0.01
orientation_noise = 0.01
observed_frame_orientations = true_frame_orientations.copy()
observed_imu_orientations = true_imu_orientations.copy()
observed_features = true_features.copy()
observed_accels = true_accels.copy()
if orientation_noise > 0:
for i, R in enumerate(observed_frame_orientations):
R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
observed_frame_orientations[i] = np.dot(R_noise, R)
for i, R in enumerate(observed_imu_orientations):
R_noise = SO3.exp(np.random.randn(3)*orientation_noise)
observed_imu_orientations[i] = np.dot(R_noise, R)
if accel_noise > 0:
observed_accels += np.random.randn(*observed_accels.shape) * accel_noise
if feature_noise > 0:
observed_features += np.random.rand(*observed_features.shape) * feature_noise
#
# Construct symbolic versions of the above
#
position_offs = 0
accel_bias_offset = position_offs + (bezier_degree-1)*3
gravity_offset = accel_bias_offset + 3
num_vars = gravity_offset + 3
sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
sym_pos_controls = np.reshape(sym_vars[position_offs:position_offs+(bezier_degree-1)*3], (bezier_degree-1, 3))
sym_accel_bias = np.asarray(sym_vars[accel_bias_offset:accel_bias_offset+3])
sym_gravity = np.asarray(sym_vars[gravity_offset:gravity_offset+3])
true_vars = np.hstack((true_pos_controls.flatten(), true_accel_bias, true_gravity))
assert len(true_vars) == len(sym_vars)
#
# Compute residuals
#
epipolar_residuals = evaluate_epipolar_residuals(sym_pos_controls, frame_times,
observed_frame_orientations, observed_features)
accel_residuals = evaluate_accel_residuals(sym_pos_controls, sym_accel_bias, sym_gravity,
imu_times, observed_accels, observed_imu_orientations)
#.........這裏部分代碼省略.........