當前位置: 首頁>>代碼示例>>Python>>正文


Python Polynomial.partial_derivative方法代碼示例

本文整理匯總了Python中polynomial.Polynomial.partial_derivative方法的典型用法代碼示例。如果您正苦於以下問題:Python Polynomial.partial_derivative方法的具體用法?Python Polynomial.partial_derivative怎麽用?Python Polynomial.partial_derivative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在polynomial.Polynomial的用法示例。


在下文中一共展示了Polynomial.partial_derivative方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_sfm

# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import partial_derivative [as 別名]
def run_sfm():
    # Construct symbolic problem
    num_landmarks = 4
    num_frames = 2

    print 'Num observations: ', num_landmarks * num_frames * 2
    print 'Num vars: ', num_frames*6 + num_landmarks*3 + num_frames*num_landmarks

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_positions = np.random.rand(num_frames, 3)
    true_cayleys = np.random.rand(num_frames, 3)

    true_qs = map(cayley_mat, true_cayleys)
    true_betas = map(cayley_denom, true_cayleys)
    true_rotations = [(q/b) for (q,b) in zip(true_qs, true_betas)]

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]
    true_alphas = [[np.linalg.norm(zu) for zu in row] for row in true_uprojections]

    true_vars = np.hstack((true_cayleys.flatten(),
                           true_positions.flatten(),
                           true_landmarks.flatten(),
                           np.asarray(true_alphas).flatten()))

    #true_projection_mat = np.reshape(true_projections, (num_frames, num_landmarks, 2))

    for i in range(num_frames):
        p = true_positions[i]
        q = true_qs[i]
        beta = true_betas[i]
        for j in range(num_landmarks):
            x = true_landmarks[j]
            z = true_projections[i][j]
            alpha = true_alphas[i][j]
            print alpha * beta * z - np.dot(q, x-p)

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + num_frames*3
    x_offs = p_offs + num_frames*3
    a_offs = x_offs + num_landmarks*3
    num_vars = a_offs + num_landmarks*num_frames

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+num_frames*3], (num_frames, 3))
    sym_positions = np.reshape(sym_vars[p_offs:p_offs+num_frames*3], (num_frames, 3))
    sym_landmarks = np.reshape(sym_vars[x_offs:x_offs+num_landmarks*3], (num_landmarks, 3))
    sym_alphas = np.reshape(sym_vars[a_offs:], (num_frames, num_landmarks))

    residuals = []
    for i in range(num_frames):
        sym_p = sym_positions[i]
        sym_s = sym_cayleys[i]
        for j in range(num_landmarks):
            sym_x = sym_landmarks[j]
            sym_a = sym_alphas[i,j]
            true_z = true_projections[i][j]
            residual = np.dot(cayley_mat(sym_s), sym_x-sym_p) - sym_a * cayley_denom(sym_s) * true_z
            residuals.extend(residual)

    print 'Residuals:'
    cost = Polynomial(num_vars)
    for residual in residuals:
        cost += np.dot(residual, residual)
        print '  ',residual(*true_vars)  #ri.num_vars, len(true_vars)

    print '\nGradients:'
    gradient = [cost.partial_derivative(i) for i in range(num_vars)]
    for gi in gradient:
        print gi(*true_vars)

    j = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
                  for r in residuals])

    print '\nJacobian singular values:'
    print j.shape
    u, s, v = np.linalg.svd(j)
    print s

    print '\nHessian eigenvalues:'
    h = np.dot(j.T, j)
    print h.shape
    print np.linalg.eigvals(h)
開發者ID:alexflint,項目名稱:polygamy,代碼行數:88,代碼來源:run_relaxed_ba.py

示例2: run_epipolar

# 需要導入模塊: from polynomial import Polynomial [as 別名]
# 或者: from polynomial.Polynomial import partial_derivative [as 別名]
def run_epipolar():
    # Construct symbolic problem
    num_landmarks = 10
    num_frames = 3

    true_landmarks = np.random.randn(num_landmarks, 3)
    true_positions = np.vstack((np.zeros(3),
                                np.random.rand(num_frames-1, 3)))
    true_cayleys = np.vstack((np.zeros(3),
                              np.random.rand(num_frames-1, 3)))

    true_qs = map(cayley_mat, true_cayleys)
    true_rotations = map(cayley, true_cayleys)

    true_uprojections = [[np.dot(R, x-p) for x in true_landmarks]
                         for R,p in zip(true_rotations, true_positions)]

    true_projections = [[normalized(zu) for zu in row] for row in true_uprojections]

    p0 = true_positions[0]
    q0 = true_qs[0]
    for i in range(1, num_frames):
        p = true_positions[i]
        q = true_qs[i]
        E = essential_matrix(q0, p0, q, p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            print np.dot(z, np.dot(E, z0))

    # construct symbolic versions of the above
    s_offs = 0
    p_offs = s_offs + (num_frames-1)*3
    num_vars = p_offs + (num_frames-1)*3

    sym_vars = [Polynomial.coordinate(i, num_vars, Fraction) for i in range(num_vars)]
    sym_cayleys = np.reshape(sym_vars[s_offs:s_offs+(num_frames-1)*3], (num_frames-1, 3))
    sym_positions = np.reshape(sym_vars[p_offs:p_offs+(num_frames-1)*3], (num_frames-1, 3))

    true_vars = np.hstack((true_cayleys[1:].flatten(),
                           true_positions[1:].flatten()))

    residuals = []
    p0 = np.zeros(3)
    R0 = np.eye(3)
    for i in range(1, num_frames):
        sym_p = sym_positions[i-1]
        sym_s = sym_cayleys[i-1]
        sym_q = cayley_mat(sym_s)
        sym_E = essential_matrix(R0, p0, sym_q, sym_p)
        for j in range(num_landmarks):
            z = true_projections[i][j]
            z0 = true_projections[0][j]
            residual = np.dot(z, np.dot(sym_E, z0))
            print 'Residual poly: ',len(residual), residual.total_degree
            residuals.append(residual)

    print 'Num sym_vars:',num_vars
    print 'Num residuals:',len(residuals)

    print 'Residuals:', len(residuals)
    cost = Polynomial(num_vars)
    for residual in residuals:
        #cost += np.dot(residual, residual)
        print '  ',residual(*true_vars)  #ri.num_vars, len(true_vars)

    print '\nGradients:'
    gradient = [cost.partial_derivative(i) for i in range(num_vars)]
    for gi in gradient:
        print '  ',gi(*true_vars)

    J = np.array([[r.partial_derivative(i)(*true_vars) for i in range(num_vars)]
                  for r in residuals])

    print '\nJacobian singular values:'
    print J.shape
    U,S,V = np.linalg.svd(J)
    print S
    print V[-1]
    print V[-2]

    print '\nHessian eigenvalues:'
    H = np.dot(J.T, J)
    print H.shape
    print np.linalg.eigvals(H)
開發者ID:alexflint,項目名稱:polygamy,代碼行數:87,代碼來源:run_relaxed_ba.py


注:本文中的polynomial.Polynomial.partial_derivative方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。