本文整理匯總了Python中parcels.Grid.from_nemo方法的典型用法代碼示例。如果您正苦於以下問題:Python Grid.from_nemo方法的具體用法?Python Grid.from_nemo怎麽用?Python Grid.from_nemo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類parcels.Grid
的用法示例。
在下文中一共展示了Grid.from_nemo方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_delay_start_example
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
def test_delay_start_example(mode, npart=10, show_movie=False):
"""Example script that shows how to 'delay' the start of particle advection.
This is useful for example when particles need to be started at different times
In this example, we use pset.add statements to add one particle every hour
in the peninsula grid. Note that the title in the movie may not show correct time"""
grid = Grid.from_nemo('examples/Peninsula_data/peninsula', extra_vars={'P': 'P'})
# Initialise particles as in the Peninsula example
x = 3. * (1. / 1.852 / 60) # 3 km offset from boundary
y = (grid.U.lat[0] + x, grid.U.lat[-1] - x) # latitude range, including offsets
lat = np.linspace(y[0], y[1], npart, dtype=np.float32)
pset = grid.ParticleSet(0, lon=[], lat=[], pclass=ptype[mode])
delaytime = delta(hours=1) # delay time between particle releases
for t in range(npart):
pset.add(ptype[mode](lon=x, lat=lat[t], grid=grid))
pset.execute(AdvectionRK4, runtime=delaytime, dt=delta(minutes=5),
interval=delta(hours=1), show_movie=show_movie)
# Note that time on the movie is not parsed correctly
pset.execute(AdvectionRK4, runtime=delta(hours=24)-npart*delaytime,
dt=delta(minutes=5), interval=delta(hours=1), show_movie=show_movie)
londist = np.array([(p.lon - x) for p in pset])
assert(londist > 0.1).all()
示例2: test_peninsula_file
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
def test_peninsula_file(gridfile, mode):
"""Open grid files and execute"""
grid = Grid.from_nemo(gridfile, extra_vars={'P': 'P'})
pset = pensinsula_example(grid, 100, mode=mode, degree=1)
# Test advection accuracy by comparing streamline values
err_adv = np.array([abs(p.p_start - p.p) for p in pset])
assert(err_adv <= 1.e-3).all()
# Test grid sampling accuracy by comparing kernel against grid sampling
err_smpl = np.array([abs(p.p - pset.grid.P[0., p.lon, p.lat]) for p in pset])
assert(err_smpl <= 1.e-3).all()
示例3: test_grid_from_nemo
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
def test_grid_from_nemo(xdim, ydim, tmpdir, filename='test_nemo'):
""" Simple test for grid initialisation from NEMO file format. """
filepath = tmpdir.join(filename)
u, v, lon, lat, depth, time = generate_grid(xdim, ydim)
grid_out = Grid.from_data(u, lon, lat, v, lon, lat, depth, time)
grid_out.write(filepath)
grid = Grid.from_nemo(filepath)
u_t = np.transpose(u).reshape((lat.size, lon.size))
v_t = np.transpose(v).reshape((lat.size, lon.size))
assert len(grid.U.data.shape) == 3 # Will be 4 once we use depth
assert len(grid.V.data.shape) == 3
assert np.allclose(grid.U.data[0, :], u_t, rtol=1e-12)
assert np.allclose(grid.V.data[0, :], v_t, rtol=1e-12)
示例4: test_moving_eddies_file
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
def test_moving_eddies_file(gridfile, mode):
grid = Grid.from_nemo(gridfile, extra_vars={'P': 'P'})
pset = moving_eddies_example(grid, 2, mode=mode)
assert(pset[0].lon < 0.5 and 46.0 < pset[0].lat < 46.35)
assert(pset[1].lon < 0.5 and 49.4 < pset[1].lat < 49.8)
示例5: moving_eddies_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
help='Number of particles to advect')
p.add_argument('-v', '--verbose', action='store_true', default=False,
help='Print particle information before and after execution')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
filename = 'examples/MovingEddies_data/moving_eddies'
# Generate grid files according to given dimensions
if args.grid is not None:
grid = moving_eddies_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid files
grid = Grid.from_nemo(filename, extra_vars={'P': 'P'})
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("moving_eddies_example(grid, args.particles, mode=args.mode, \
verbose=args.verbose, method=method[args.method])",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
moving_eddies_example(grid, args.particles, mode=args.mode,
verbose=args.verbose, method=method[args.method])
示例6: peninsula_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
p.add_argument('-o', '--nooutput', action='store_true', default=False,
help='Suppress trajectory output')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
if args.grid is not None:
filename = 'peninsula'
grid = peninsula_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid file set
grid = Grid.from_nemo('peninsula', extra_vars={'P': 'P'})
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("pensinsula_example(grid, args.particles, mode=args.mode,\
degree=args.degree, verbose=args.verbose,\
output=not args.nooutput, method=method[args.method])",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
pensinsula_example(grid, args.particles, mode=args.mode,
degree=args.degree, verbose=args.verbose,
output=not args.nooutput, method=method[args.method])
示例7: stommel_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_nemo [as 別名]
help='Number of particles to advect')
p.add_argument('-v', '--verbose', action='store_true', default=False,
help='Print particle information before and after execution')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
filename = 'stommel'
# Generate grid files according to given dimensions
if args.grid is not None:
grid = stommel_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid files
grid = Grid.from_nemo(filename)
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("stommel_example(grid, args.particles, mode=args.mode, \
verbose=args.verbose)",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
stommel_example(grid, args.particles, mode=args.mode,
verbose=args.verbose, method=method[args.method])