本文整理匯總了Python中parcels.Grid.from_data方法的典型用法代碼示例。如果您正苦於以下問題:Python Grid.from_data方法的具體用法?Python Grid.from_data怎麽用?Python Grid.from_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類parcels.Grid
的用法示例。
在下文中一共展示了Grid.from_data方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_meridionalflow_sperical
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_meridionalflow_sperical(mode, xdim=100, ydim=200):
""" Create uniform NORTHWARD flow on sperical earth and advect particles
As flow is so simple, it can be directly compared to analytical solution
"""
maxvel = 1.
lon = np.linspace(-180, 180, xdim, dtype=np.float32)
lat = np.linspace(-90, 90, ydim, dtype=np.float32)
U = np.zeros([xdim, ydim])
V = maxvel * np.ones([xdim, ydim])
grid = Grid.from_data(np.array(U, dtype=np.float32), lon, lat,
np.array(V, dtype=np.float32), lon, lat)
lonstart = [0, 45]
latstart = [0, 45]
endtime = delta(hours=24)
pset = grid.ParticleSet(2, pclass=pclass(mode), lon=lonstart, lat=latstart)
pset.execute(pset.Kernel(AdvectionRK4), endtime=endtime, dt=delta(hours=1))
assert(pset[0].lat - (latstart[0] + endtime.total_seconds() * maxvel / 1852 / 60) < 1e-4)
assert(pset[0].lon - lonstart[0] < 1e-4)
assert(pset[1].lat - (latstart[1] + endtime.total_seconds() * maxvel / 1852 / 60) < 1e-4)
assert(pset[1].lon - lonstart[1] < 1e-4)
示例2: radial_rotation_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def radial_rotation_grid(xdim=200, ydim=200): # Define 2D flat, square grid for testing purposes.
lon = np.linspace(0, 60, xdim, dtype=np.float32)
lat = np.linspace(0, 60, ydim, dtype=np.float32)
x0 = 30. # Define the origin to be the centre of the grid.
y0 = 30.
U = np.zeros((xdim, ydim), dtype=np.float32)
V = np.zeros((xdim, ydim), dtype=np.float32)
T = delta(days=1)
omega = 2*np.pi/T.total_seconds() # Define the rotational period as 1 day.
for i in range(lon.size):
for j in range(lat.size):
r = np.sqrt((lon[i]-x0)**2 + (lat[j]-y0)**2) # Define radial displacement.
assert(r >= 0.)
assert(r <= np.sqrt(x0**2 + y0**2))
theta = math.atan2((lat[j]-y0), (lon[i]-x0)) # Define the polar angle.
assert(abs(theta) <= np.pi)
U[i, j] = r * math.sin(theta) * omega
V[i, j] = -r * math.cos(theta) * omega
return Grid.from_data(U, lon, lat, V, lon, lat, mesh='flat')
示例3: test_zonalflow_sperical
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_zonalflow_sperical(mode, k_sample_p, xdim=100, ydim=200):
""" Create uniform EASTWARD flow on sperical earth and advect particles
As flow is so simple, it can be directly compared to analytical solution
Note that in this case the cosine conversion is needed
"""
maxvel = 1.
p_fld = 10
lon = np.linspace(-180, 180, xdim, dtype=np.float32)
lat = np.linspace(-90, 90, ydim, dtype=np.float32)
V = np.zeros([xdim, ydim])
U = maxvel * np.ones([xdim, ydim])
P = p_fld * np.ones([xdim, ydim])
grid = Grid.from_data(np.array(U, dtype=np.float32), lon, lat,
np.array(V, dtype=np.float32), lon, lat,
field_data={'P': np.array(P, dtype=np.float32)})
lonstart = [0, 45]
latstart = [0, 45]
endtime = delta(hours=24)
pset = grid.ParticleSet(2, pclass=pclass(mode), lon=lonstart, lat=latstart)
pset.execute(pset.Kernel(AdvectionRK4) + k_sample_p,
endtime=endtime, dt=delta(hours=1))
assert(pset[0].lat - latstart[0] < 1e-4)
assert(pset[0].lon - (lonstart[0] + endtime.total_seconds() * maxvel / 1852 / 60
/ cos(latstart[0] * pi / 180)) < 1e-4)
assert(abs(pset[0].p - p_fld) < 1e-4)
assert(pset[1].lat - latstart[1] < 1e-4)
assert(pset[1].lon - (lonstart[1] + endtime.total_seconds() * maxvel / 1852 / 60
/ cos(latstart[1] * pi / 180)) < 1e-4)
assert(abs(pset[1].p - p_fld) < 1e-4)
示例4: moving_eddies_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def moving_eddies_grid(xdim=200, ydim=350):
"""Generate a grid encapsulating the flow field consisting of two
moving eddies, one moving westward and the other moving northwestward.
Note that this is not a proper geophysical flow. Rather, a Gaussian eddy
is moved artificially with uniform velocities. Velocities are calculated
from geostrophy.
"""
# Set NEMO grid variables
depth = np.zeros(1, dtype=np.float32)
time = np.arange(0.0, 25.0 * 86400.0, 86400.0, dtype=np.float64)
# Coordinates of the test grid (on A-grid in deg)
lon = np.linspace(0, 4, xdim, dtype=np.float32)
lat = np.linspace(45, 52, ydim, dtype=np.float32)
# Grid spacing in m
def cosd(x):
return math.cos(math.radians(float(x)))
dx = (lon[1] - lon[0]) * 1852 * 60 * cosd(lat.mean())
dy = (lat[1] - lat[0]) * 1852 * 60
# Define arrays U (zonal), V (meridional), W (vertical) and P (sea
# surface height) all on A-grid
U = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
V = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
P = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
# Some constants
corio_0 = 1.0e-4 # Coriolis parameter
h0 = 1 # Max eddy height
sig = 0.5 # Eddy e-folding decay scale (in degrees)
g = 10 # Gravitational constant
eddyspeed = 0.1 # Translational speed in m/s
dX = eddyspeed * 86400 / dx # Grid cell movement of eddy max each day
dY = eddyspeed * 86400 / dy # Grid cell movement of eddy max each day
[x, y] = np.mgrid[: lon.size, : lat.size]
for t in range(time.size):
hymax_1 = lat.size / 7.0
hxmax_1 = 0.75 * lon.size - dX * t
hymax_2 = 3.0 * lat.size / 7.0 + dY * t
hxmax_2 = 0.75 * lon.size - dX * t
P[:, :, t] = h0 * np.exp(
-(x - hxmax_1) ** 2 / (sig * lon.size / 4.0) ** 2 - (y - hymax_1) ** 2 / (sig * lat.size / 7.0) ** 2
)
P[:, :, t] += h0 * np.exp(
-(x - hxmax_2) ** 2 / (sig * lon.size / 4.0) ** 2 - (y - hymax_2) ** 2 / (sig * lat.size / 7.0) ** 2
)
V[:-1, :, t] = -np.diff(P[:, :, t], axis=0) / dx / corio_0 * g
V[-1, :, t] = V[-2, :, t] # Fill in the last column
U[:, :-1, t] = np.diff(P[:, :, t], axis=1) / dy / corio_0 * g
U[:, -1, t] = U[:, -2, t] # Fill in the last row
return Grid.from_data(U, lon, lat, V, lon, lat, depth, time, field_data={"P": P})
示例5: grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def grid(xdim=100, ydim=100):
U = np.zeros((xdim, ydim), dtype=np.float32)
V = np.zeros((xdim, ydim), dtype=np.float32)
lon = np.linspace(0, 1, xdim, dtype=np.float32)
lat = np.linspace(0, 1, ydim, dtype=np.float32)
depth = np.zeros(1, dtype=np.float32)
time = np.zeros(1, dtype=np.float64)
return Grid.from_data(U, lon, lat, V, lon, lat, depth, time)
示例6: test_add_field
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_add_field(xdim, ydim, tmpdir, filename="test_add"):
filepath = tmpdir.join(filename)
u, v, lon, lat, depth, time = generate_grid(xdim, ydim)
grid = Grid.from_data(u, lon, lat, v, lon, lat, depth, time)
field = Field("newfld", grid.U.data, grid.U.lon, grid.U.lat)
grid.add_field(field)
assert grid.newfld.data.shape == grid.U.data.shape
grid.write(filepath)
示例7: grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def grid(xdim=20, ydim=20):
""" Standard unit mesh grid """
lon = np.linspace(0., 1., xdim, dtype=np.float32)
lat = np.linspace(0., 1., ydim, dtype=np.float32)
U, V = np.meshgrid(lat, lon)
return Grid.from_data(np.array(U, dtype=np.float32), lon, lat,
np.array(V, dtype=np.float32), lon, lat,
mesh='flat')
示例8: peninsula_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def peninsula_grid(xdim, ydim):
"""Construct a grid encapsulating the flow field around an
idealised peninsula.
:param xdim: Horizontal dimension of the generated grid
:param xdim: Vertical dimension of the generated grid
The original test description can be found in Fig. 2.2.3 in:
North, E. W., Gallego, A., Petitgas, P. (Eds). 2009. Manual of
recommended practices for modelling physical - biological
interactions during fish early life.
ICES Cooperative Research Report No. 295. 111 pp.
http://archimer.ifremer.fr/doc/00157/26792/24888.pdf
Note that the problem is defined on an A-grid while NEMO
normally returns C-grids. However, to avoid accuracy
problems with interpolation from A-grid to C-grid, we
return NetCDF files that are on an A-grid.
"""
# Set NEMO grid variables
depth = np.zeros(1, dtype=np.float32)
time = np.zeros(1, dtype=np.float64)
# Generate the original test setup on A-grid in km
dx = 100. / xdim / 2.
dy = 50. / ydim / 2.
La = np.linspace(dx, 100.-dx, xdim, dtype=np.float32)
Wa = np.linspace(dy, 50.-dy, ydim, dtype=np.float32)
# Define arrays U (zonal), V (meridional), W (vertical) and P (sea
# surface height) all on A-grid
U = np.zeros((xdim, ydim), dtype=np.float32)
V = np.zeros((xdim, ydim), dtype=np.float32)
W = np.zeros((xdim, ydim), dtype=np.float32)
P = np.zeros((xdim, ydim), dtype=np.float32)
u0 = 1
x0 = 50.
R = 0.32 * 50.
# Create the fields
x, y = np.meshgrid(La, Wa, sparse=True, indexing='ij')
P = u0*R**2*y/((x-x0)**2+y**2)-u0*y
U = u0-u0*R**2*((x-x0)**2-y**2)/(((x-x0)**2+y**2)**2)
V = -2*u0*R**2*((x-x0)*y)/(((x-x0)**2+y**2)**2)
# Set land points to NaN
I = P >= 0.
U[I] = np.nan
V[I] = np.nan
W[I] = np.nan
# Convert from km to lat/lon
lon = La / 1.852 / 60.
lat = Wa / 1.852 / 60.
return Grid.from_data(U, lon, lat, V, lon, lat, depth, time, field_data={'P': P})
示例9: grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def grid(xdim=200, ydim=100):
""" Standard grid spanning the earth's coordinates with U and V
equivalent to longitude and latitude in deg.
"""
lon = np.linspace(-180, 180, xdim, dtype=np.float32)
lat = np.linspace(-90, 90, ydim, dtype=np.float32)
U, V = np.meshgrid(lat, lon)
return Grid.from_data(np.array(U, dtype=np.float32), lon, lat,
np.array(V, dtype=np.float32), lon, lat,
mesh='flat')
示例10: test_grid_from_data
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_grid_from_data(xdim, ydim):
""" Simple test for grid initialisation from data. """
u, v, lon, lat, depth, time = generate_grid(xdim, ydim)
grid = Grid.from_data(u, lon, lat, v, lon, lat, depth, time)
u_t = np.transpose(u).reshape((lat.size, lon.size))
v_t = np.transpose(v).reshape((lat.size, lon.size))
assert len(grid.U.data.shape) == 3 # Will be 4 once we use depth
assert len(grid.V.data.shape) == 3
assert np.allclose(grid.U.data[0, :], u_t, rtol=1e-12)
assert np.allclose(grid.V.data[0, :], v_t, rtol=1e-12)
示例11: grid_geometric
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def grid_geometric(xdim=200, ydim=100):
""" Standard earth grid with U and V equivalent to lon/lat in m. """
lon = np.linspace(-180, 180, xdim, dtype=np.float32)
lat = np.linspace(-90, 90, ydim, dtype=np.float32)
U, V = np.meshgrid(lat, lon)
U *= 1000. * 1.852 * 60.
V *= 1000. * 1.852 * 60.
grid = Grid.from_data(np.array(U, dtype=np.float32), lon, lat,
np.array(V, dtype=np.float32), lon, lat)
grid.U.units = Geographic()
grid.V.units = Geographic()
return grid
示例12: grid_stationary
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def grid_stationary(xdim=100, ydim=100, maxtime=delta(hours=6)):
"""Generate a grid encapsulating the flow field of a stationary eddy.
Reference: N. Fabbroni, 2009, "Numerical simulations of passive
tracers dispersion in the sea"
"""
lon = np.linspace(0, 25000, xdim, dtype=np.float32)
lat = np.linspace(0, 25000, ydim, dtype=np.float32)
time = np.arange(0., maxtime.total_seconds(), 60., dtype=np.float64)
U = np.ones((xdim, ydim, 1), dtype=np.float32) * u_0 * np.cos(f * time)
V = np.ones((xdim, ydim, 1), dtype=np.float32) * -u_0 * np.sin(f * time)
return Grid.from_data(U, lon, lat, V, lon, lat, time=time, mesh='flat')
示例13: test_grid_from_nemo
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_grid_from_nemo(xdim, ydim, tmpdir, filename='test_nemo'):
""" Simple test for grid initialisation from NEMO file format. """
filepath = tmpdir.join(filename)
u, v, lon, lat, depth, time = generate_grid(xdim, ydim)
grid_out = Grid.from_data(u, lon, lat, v, lon, lat, depth, time)
grid_out.write(filepath)
grid = Grid.from_nemo(filepath)
u_t = np.transpose(u).reshape((lat.size, lon.size))
v_t = np.transpose(v).reshape((lat.size, lon.size))
assert len(grid.U.data.shape) == 3 # Will be 4 once we use depth
assert len(grid.V.data.shape) == 3
assert np.allclose(grid.U.data[0, :], u_t, rtol=1e-12)
assert np.allclose(grid.V.data[0, :], v_t, rtol=1e-12)
示例14: test_advection_zonal
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def test_advection_zonal(lon, lat, mode, npart=10):
""" Particles at high latitude move geographically faster due to
the pole correction in `GeographicPolar`.
"""
U = np.ones((lon.size, lat.size), dtype=np.float32)
V = np.zeros((lon.size, lat.size), dtype=np.float32)
grid = Grid.from_data(U, lon, lat, V, lon, lat, mesh='spherical')
pset = grid.ParticleSet(npart, pclass=ptype[mode],
lon=np.zeros(npart, dtype=np.float32) + 20.,
lat=np.linspace(0, 80, npart, dtype=np.float32))
pset.execute(AdvectionRK4, endtime=delta(hours=2), dt=delta(seconds=30))
assert (np.diff(np.array([p.lon for p in pset])) > 1.e-4).all()
示例15: stommel_grid
# 需要導入模塊: from parcels import Grid [as 別名]
# 或者: from parcels.Grid import from_data [as 別名]
def stommel_grid(xdim=200, ydim=200):
"""Simulate a periodic current along a western boundary, with significantly
larger velocities along the western edge than the rest of the region
The original test description can be found in: N. Fabbroni, 2009,
Numerical Simulation of Passive tracers dispersion in the sea,
Ph.D. dissertation, University of Bologna
http://amsdottorato.unibo.it/1733/1/Fabbroni_Nicoletta_Tesi.pdf
"""
# Set NEMO grid variables
depth = np.zeros(1, dtype=np.float32)
time = np.linspace(0., 100000. * 86400., 2, dtype=np.float64)
# Some constants
A = 100
eps = 0.05
a = 10000
b = 10000
# Coordinates of the test grid (on A-grid in deg)
lon = np.linspace(0, a, xdim, dtype=np.float32)
lat = np.linspace(0, b, ydim, dtype=np.float32)
# Define arrays U (zonal), V (meridional), W (vertical) and P (sea
# surface height) all on A-grid
U = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
V = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
P = np.zeros((lon.size, lat.size, time.size), dtype=np.float32)
[x, y] = np.mgrid[:lon.size, :lat.size]
l1 = (-1 + math.sqrt(1 + 4 * math.pi**2 * eps**2)) / (2 * eps)
l2 = (-1 - math.sqrt(1 + 4 * math.pi**2 * eps**2)) / (2 * eps)
c1 = (1 - math.exp(l2)) / (math.exp(l2) - math.exp(l1))
c2 = -(1 + c1)
for t in range(time.size):
for i in range(lon.size):
for j in range(lat.size):
xi = lon[i] / a
yi = lat[j] / b
P[i, j, t] = A * (c1*math.exp(l1*xi) + c2*math.exp(l2*xi) + 1) * math.sin(math.pi * yi)
for i in range(lon.size-2):
for j in range(lat.size):
V[i+1, j, t] = (P[i+2, j, t] - P[i, j, t]) / (2 * a / xdim)
for i in range(lon.size):
for j in range(lat.size-2):
U[i, j+1, t] = -(P[i, j+2, t] - P[i, j, t]) / (2 * b / ydim)
return Grid.from_data(U, lon, lat, V, lon, lat, depth, time, field_data={'P': P}, mesh='flat')