本文整理匯總了Python中opus_core.regression_model.RegressionModel.run方法的典型用法代碼示例。如果您正苦於以下問題:Python RegressionModel.run方法的具體用法?Python RegressionModel.run怎麽用?Python RegressionModel.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類opus_core.regression_model.RegressionModel
的用法示例。
在下文中一共展示了RegressionModel.run方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
dataset should be an instance of DevelopmentProjectProposalDataset, if it isn't,
create dataset on the fly with parcel and development template
index and self.filter_attribute (passed in __init___) are relative to dataset
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
proposal_component_set = create_from_proposals_and_template_components(dataset,
self.dataset_pool.get_dataset('development_template_component'))
self.dataset_pool.replace_dataset(proposal_component_set.get_dataset_name(), proposal_component_set)
#proposal_component_set.flush_dataset_if_low_memory_mode()
#dataset.flush_dataset_if_low_memory_mode()
result = RegressionModel.run(self, specification, coefficients, dataset,
index=index, chunk_specification=chunk_specification, data_objects=data_objects,
run_config=run_config, debuglevel=debuglevel)
if re.search("^ln_", self.outcome_attribute_name): # if the outcome attr. name starts with 'ln_'
# the results will be exponentiated.
self.outcome_attribute_name = self.outcome_attribute_name[3:len(self.outcome_attribute_name)]
result = exp(result)
if self.outcome_attribute_name not in dataset.get_known_attribute_names():
dataset.add_primary_attribute(self.defalult_value + zeros(dataset.size()),
self.outcome_attribute_name)
dataset.set_values_of_one_attribute(self.outcome_attribute_name,
result, index=index)
self.correct_infinite_values(dataset, self.outcome_attribute_name)
return dataset
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:35,代碼來源:development_project_proposal_regression_model.py
示例2: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, **kwargs):
if index is None:
index = arange(dataset.size())
data_objects = kwargs.get("data_objects",{})
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
# filter out agents for this group
new_index = self.group_member.get_index_of_my_agents(dataset, index, dataset_pool=self.dataset_pool)
regresult = RegressionModel.run(self, specification, coefficients, dataset,
index=index[new_index], **kwargs)
result = zeros(index.size, dtype=float32)
result[new_index] = regresult
return result
示例3: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset,
index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
outcome_attribute_short = self.outcome_attribute.get_alias()
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter_attribute <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
dataset_pool=self.dataset_pool, resources=res)
current_year = SimulationState().get_current_time()
current_month = int( re.search('\d+$', outcome_attribute_short).group() )
# date in YYYYMM format, matching to the id_name field of weather dataset
date = int( "%d%02d" % (current_year, current_month) )
date = array([date] * dataset.size())
if "date" in dataset.get_known_attribute_names():
dataset.set_values_of_one_attribute("date", date)
else:
dataset.add_primary_attribute(date, "date")
water_demand = RegressionModel.run(self, specification, coefficients, dataset,
index, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
if (water_demand == None) or (water_demand.size <=0):
return water_demand
if index == None:
index = arange(dataset.size())
if re.search("^ln_", outcome_attribute_short):
# if the outcome attr. name starts with 'ln_' the results will be exponentiated.
outcome_attribute_name = outcome_attribute_short[3:len(outcome_attribute_short)]
water_demand = exp(water_demand)
else:
outcome_attribute_name = outcome_attribute_short
if outcome_attribute_name in dataset.get_known_attribute_names():
dataset.set_values_of_one_attribute(outcome_attribute_name, water_demand, index)
else:
results = zeros(dataset.size(), dtype=water_demand.dtype)
results[index] = water_demand
dataset.add_primary_attribute(results, outcome_attribute_name)
return water_demand
示例4: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, **kwargs):
"""
See description above. If missing values of the outcome attribute are suppose to be excluded from
the addition of the initial residuals, set an entry of run_config 'exclude_missing_values_from_initial_error' to True.
Additionaly, an entry 'outcome_attribute_missing_value' specifies the missing value (default is 0).
Similarly, if outliers are to be excluded, the run_config entry "exclude_outliers_from_initial_error" should be set to True.
In such a case, run_config entries 'outlier_is_less_than' and 'outlier_is_greater_than' can define lower and upper bounds for outliers.
By default, an outlier is a data point smaller than 0. There is no default upper bound.
"""
if self.outcome_attribute is None:
raise StandardError, "An outcome attribute must be specified for this model. Pass it into the initialization."
if self.outcome_attribute.get_alias() not in dataset.get_known_attribute_names():
try:
dataset.compute_variables(self.outcome_attribute, dataset_pool=self.dataset_pool)
except:
raise StandardError, "The outcome attribute %s must be a known attribute of the dataset %s." % (
self.outcome_attribute.get_alias(), dataset.get_dataset_name())
if index is None:
index = arange(dataset.size())
original_data = dataset.get_attribute_by_index(self.outcome_attribute, index)
outcome = RegressionModel.run(self, specification, coefficients, dataset, index, initial_values=original_data.astype('float32'), **kwargs)
initial_error_name = "_init_error_%s" % self.outcome_attribute.get_alias()
if initial_error_name not in dataset.get_known_attribute_names():
initial_error = original_data - outcome
dataset.add_primary_attribute(name=initial_error_name, data=zeros(dataset.size(), dtype="float32"))
exclude_missing_values = self.run_config.get("exclude_missing_values_from_initial_error", False)
exclude_outliers = self.run_config.get("exclude_outliers_from_initial_error", False)
if exclude_missing_values:
missing_value = self.run_config.get("outcome_attribute_missing_value", 0)
initial_error[original_data == missing_value] = 0
logger.log_status('Values equal %s were excluded from adding residuals.' % missing_value)
if exclude_outliers:
outlier_low = self.run_config.get("outlier_is_less_than", 0)
initial_error[original_data < outlier_low] = 0
outlier_high = self.run_config.get("outlier_is_greater_than", original_data.max())
initial_error[original_data > outlier_high] = 0
logger.log_status('Values less than %s and larger than %s were excluded from adding residuals.' % (outlier_low, outlier_high))
dataset.set_values_of_one_attribute(initial_error_name, initial_error, index)
else:
initial_error = dataset.get_attribute_by_index(initial_error_name, index)
return outcome + initial_error
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:48,代碼來源:regression_model_with_addition_initial_residuals.py
示例5: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
regression_outcome = RegressionModel.run(self, specification, coefficients, dataset,
index=index, chunk_specification=chunk_specification, data_objects=data_objects,
run_config=run_config, debuglevel=debuglevel)
if (regression_outcome == None) or (regression_outcome.size <=0):
return regression_outcome
if index == None:
index = arange(dataset.size())
result = exp(regression_outcome)
result = result/(1.0+result)
if (self.attribute_to_modify not in dataset.get_known_attribute_names()):
dataset.add_attribute(name=self.attribute_to_modify,
data=zeros((dataset.size(),), dtype=float32))
dataset.set_values_of_one_attribute(self.attribute_to_modify, result, index)
return result
示例6: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter_attribute <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
dataset_pool=self.dataset_pool, resources=res)
housing_price = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
if (housing_price == None) or (housing_price.size <=0):
return housing_price
if index == None:
index = arange(dataset.size())
dataset.set_values_of_one_attribute("housing_price", housing_price, index)
return
示例7: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter_attribute <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
dataset_pool=self.dataset_pool, resources=res)
zeroworkers = dataset.compute_variables('household.workers == 0')
index_zeroworker = where(zeroworkers)[0]
#Run regression model
incomes = RegressionModel.run(self, specification, coefficients, dataset, index_zeroworker, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
dataset.set_values_of_one_attribute("income", incomes, index_zeroworker)
#Bump up all negative incomes to zero
negative_income = dataset.compute_variables('household.income < 0')
index_neg_inc = where(negative_income==1)[0]
if index_neg_inc.size > 0:
dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)
return
示例8: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter, threshold=0, index=index, dataset_pool=self.dataset_pool,
resources=res)
ln_total_land_value = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
if (ln_total_land_value == None) or (ln_total_land_value.size <=0):
return ln_total_land_value
if index == None:
index = arange(dataset.size())
total_land_value = exp(ln_total_land_value)
residential_land_value = total_land_value * dataset.get_attribute_by_index("fraction_residential_land", index)
nonresidential_land_value = total_land_value - residential_land_value
dataset.set_values_of_one_attribute("residential_land_value", residential_land_value, index)
dataset.set_values_of_one_attribute("nonresidential_land_value", nonresidential_land_value,
index)
self.post_check(dataset)
return index
示例9: Resources
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
#create a ConsumptionDataset instance out of gridcells - simulate water demand for every gridcell
resources = Resources({'data':{
"grid_id":gridcells.get_id_attribute(),
"year":year * ones(gridcells.size()),
"month":months[0] * ones(gridcells.size()),
"sum_demand":zeros(gridcells.size())
}})
this_consumption = dataset_pool.get_dataset(consumption_type)
#join consumption set with weather data
this_consumption.join(weather, name=weather_attributes, join_attribute="year",
metadata=AttributeType.PRIMARY)
#run simulation
result = model.run(specification, coefficients, this_consumption, index=None,
chunk_specification={'nchunks':3},
data_objects=dataset_pool.datasets_in_pool())
#result = exp(result)
this_consumption.modify_attribute("sum_demand", result)
#keep only those with meanful water demand pridiction, e.g. residential_units > 0
keep_index = where(result>0)[0]
this_consumption.subset_by_index(keep_index)
year_dir = os.path.join(cache_directory, str(year))
out_storage = StorageFactory().get_storage(type="tab_storage", storage_location=year_dir)
this_consumption.flush_dataset()
print result
示例10: run
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter_attribute <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
dataset_pool=self.dataset_pool, resources=res)
##Initialize income of 2-person households that the hh-formation models have assigned a brand new household id.
new_2household_ids = dataset.compute_variables('(household.income==(-2))')
initialize_2income = where(new_2household_ids == 1)[0]
if initialize_2income.size > 0:
dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*18593) + ((household.aggregate(person.education, function=mean))*11293) + ((household.aggregate(person.age, function=mean))*889) - 95508)')[initialize_2income], initialize_2income)
##Initialize income of 1-person households that the hh-dissolution models have assigned a brand new household id.
new_1household_ids = dataset.compute_variables('(household.income==(-1))')
initialize_1income = where(new_1household_ids == 1)[0]
if initialize_1income.size > 0:
dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*24000) + ((household.aggregate(person.education, function=mean))*5590) + ((household.aggregate(person.age, function=mean))*583) - 51957)')[initialize_1income], initialize_1income)
##Initialize income of 3-person households that the hh-formation models have assigned a brand new household id.
new_3household_ids = dataset.compute_variables('(household.income==(-3))')
initialize_3income = where(new_3household_ids == 1)[0]
if initialize_3income.size > 0:
dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*20078) + ((household.aggregate(person.education, function=mean))*8531) + ((household.aggregate(person.age, function=mean))*861) - 72319)')[initialize_3income], initialize_3income)
##Initialize income of 4-person households that the hh-formation models have assigned a brand new household id.
new_4household_ids = dataset.compute_variables('(household.income==(-4))')
initialize_4income = where(new_4household_ids == 1)[0]
if initialize_4income.size > 0:
dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*21883) + ((household.aggregate(person.education, function=mean))*9656) + ((household.aggregate(person.age, function=mean))*1806) - 112131)')[initialize_4income], initialize_4income)
##Initialize income of 5-person households that the hh-formation models have assigned a brand new household id.
new_5household_ids = dataset.compute_variables('(household.income==(-5))')
initialize_5income = where(new_5household_ids == 1)[0]
if initialize_5income.size > 0:
dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*8797) + ((household.aggregate(person.education, function=mean))*9049) + ((household.aggregate(person.age, function=mean))*670) - 27224)')[initialize_5income], initialize_5income)
negative_income = dataset.compute_variables('household.income < 0')
index_neg_inc = where(negative_income==1)[0]
if index_neg_inc.size > 0:
dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)
#Run regression model- all coefficients are applied here except macro employment growth, which comes next
incomes = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
#Add to the regression equation the term for employment growth (this year's jobs / last year's jobs). Job totals from the control total dataset.
# current_year = SimulationState().get_current_time()
# if current_year == 2010:
# term_to_add = 1.04*1.82 #322729 #319190.3
# else:
# base_year = '2009'
# base_cache_storage = AttributeCache().get_flt_storage_for_year(base_year)
# control_totals = ControlTotalDataset(in_storage=base_cache_storage, in_table_name="annual_employment_control_totals")
# number_of_jobs = control_totals.get_attribute("number_of_jobs")
# idx_current = where(control_totals.get_attribute("year")==current_year)[0]
# jobs_current = number_of_jobs[idx_current]
# idx_previous = where(control_totals.get_attribute("year")==(current_year-1))[0]
# jobs_previous = number_of_jobs[idx_previous]
# emp_ratio = ((jobs_current.sum())*1.0)/(jobs_previous.sum())
# logger.log_status("empratio: %s" % (emp_ratio))
# term_to_add = emp_ratio * 1.82
# incomes = incomes + term_to_add
incomes = exp(incomes)
if (incomes == None) or (incomes.size <=0):
return incomes
if index == None:
index = arange(dataset.size())
dataset.set_values_of_one_attribute("income", incomes, index)
#Bump up all negative incomes to zero
negative_income = dataset.compute_variables('household.income < 0')
index_neg_inc = where(negative_income==1)[0]
if index_neg_inc.size > 0:
dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)
##Add code to bump down all incomes above 3million
too_high_income = dataset.compute_variables('household.income > 5000000')
index_too_high_income = where(too_high_income==1)[0]
if index_too_high_income.size > 0:
dataset.modify_attribute('income', array(index_too_high_income.size*[5000000]), index_too_high_income)
return
示例11: run_after_estimation
# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
def run_after_estimation(self, *args, **kwargs):
return RegressionModel.run(self, *args, **kwargs)
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:4,代碼來源:regression_model_with_addition_initial_residuals.py