當前位置: 首頁>>代碼示例>>Python>>正文


Python RegressionModel.run方法代碼示例

本文整理匯總了Python中opus_core.regression_model.RegressionModel.run方法的典型用法代碼示例。如果您正苦於以下問題:Python RegressionModel.run方法的具體用法?Python RegressionModel.run怎麽用?Python RegressionModel.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在opus_core.regression_model.RegressionModel的用法示例。


在下文中一共展示了RegressionModel.run方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, index=None, chunk_specification=None, 
             data_objects=None, run_config=None, debuglevel=0):
        """ For info on the arguments see RegressionModel.
        dataset should be an instance of DevelopmentProjectProposalDataset, if it isn't,
        create dataset on the fly with parcel and development template
        index and self.filter_attribute (passed in __init___) are relative to dataset
        """
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        proposal_component_set = create_from_proposals_and_template_components(dataset, 
                                                           self.dataset_pool.get_dataset('development_template_component'))
        
        self.dataset_pool.replace_dataset(proposal_component_set.get_dataset_name(), proposal_component_set)
        #proposal_component_set.flush_dataset_if_low_memory_mode()
        #dataset.flush_dataset_if_low_memory_mode()
        
        result = RegressionModel.run(self, specification, coefficients, dataset, 
                                         index=index, chunk_specification=chunk_specification, data_objects=data_objects,
                                         run_config=run_config, debuglevel=debuglevel)

        if re.search("^ln_", self.outcome_attribute_name): # if the outcome attr. name starts with 'ln_'
                                                           # the results will be exponentiated.
            self.outcome_attribute_name = self.outcome_attribute_name[3:len(self.outcome_attribute_name)]
            result = exp(result)

        if self.outcome_attribute_name not in dataset.get_known_attribute_names():
            dataset.add_primary_attribute(self.defalult_value + zeros(dataset.size()),
                                             self.outcome_attribute_name)
        
        dataset.set_values_of_one_attribute(self.outcome_attribute_name, 
                                                 result, index=index)
        self.correct_infinite_values(dataset, self.outcome_attribute_name)
        return dataset            
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:35,代碼來源:development_project_proposal_regression_model.py

示例2: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
 def run(self, specification, coefficients, dataset, index=None, **kwargs):
     if index is None:
         index = arange(dataset.size())
     data_objects = kwargs.get("data_objects",{})
     if data_objects is not None:
         self.dataset_pool.add_datasets_if_not_included(data_objects)
     # filter out agents for this group
     new_index = self.group_member.get_index_of_my_agents(dataset, index, dataset_pool=self.dataset_pool)
     regresult = RegressionModel.run(self,  specification, coefficients, dataset,
                                            index=index[new_index], **kwargs)
     result = zeros(index.size, dtype=float32)
     result[new_index] = regresult
     return result
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:15,代碼來源:regression_model_member.py

示例3: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, 
            index=None, chunk_specification=None,
            data_objects=None, run_config=None, debuglevel=0):
        """ For info on the arguments see RegressionModel.
        """
        outcome_attribute_short = self.outcome_attribute.get_alias()
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        if self.filter_attribute <> None:
            res = Resources({"debug":debuglevel})
            index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
                                               dataset_pool=self.dataset_pool, resources=res)
        
        current_year = SimulationState().get_current_time()
        current_month = int( re.search('\d+$', outcome_attribute_short).group() )
        # date in YYYYMM format, matching to the id_name field of weather dataset
        date = int( "%d%02d" % (current_year, current_month) )
        date = array([date] * dataset.size())
        
        if "date" in dataset.get_known_attribute_names():
            dataset.set_values_of_one_attribute("date", date)
        else:
            dataset.add_primary_attribute(date, "date")

        water_demand = RegressionModel.run(self, specification, coefficients, dataset, 
                                           index, chunk_specification,
                                           run_config=run_config, debuglevel=debuglevel)
        if (water_demand == None) or (water_demand.size <=0):
            return water_demand
        
        if index == None:
            index = arange(dataset.size())
            
        if re.search("^ln_", outcome_attribute_short): 
            # if the outcome attr. name starts with 'ln_' the results will be exponentiated.
            outcome_attribute_name = outcome_attribute_short[3:len(outcome_attribute_short)]
            water_demand = exp(water_demand)
        else:
            outcome_attribute_name = outcome_attribute_short

        if outcome_attribute_name in dataset.get_known_attribute_names():
            dataset.set_values_of_one_attribute(outcome_attribute_name, water_demand, index)
        else:
            results = zeros(dataset.size(), dtype=water_demand.dtype)
            results[index] = water_demand
            dataset.add_primary_attribute(results, outcome_attribute_name)

        return water_demand
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:50,代碼來源:water_demand_model.py

示例4: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, index=None, **kwargs):
        """
        See description above. If missing values of the outcome attribute are suppose to be excluded from
        the addition of the initial residuals, set an entry of run_config 'exclude_missing_values_from_initial_error' to True.
        Additionaly, an entry 'outcome_attribute_missing_value' specifies the missing value (default is 0).
        Similarly, if outliers are to be excluded, the run_config entry "exclude_outliers_from_initial_error" should be set to True.
        In such a case, run_config entries 'outlier_is_less_than' and 'outlier_is_greater_than' can define lower and upper bounds for outliers. 
        By default, an outlier is a data point smaller than 0. There is no default upper bound.
        """
        if self.outcome_attribute is None:
            raise StandardError, "An outcome attribute must be specified for this model. Pass it into the initialization."
        
        if self.outcome_attribute.get_alias() not in dataset.get_known_attribute_names():
            try:
                dataset.compute_variables(self.outcome_attribute, dataset_pool=self.dataset_pool)
            except:
                raise StandardError, "The outcome attribute %s must be a known attribute of the dataset %s." % (
                                                                self.outcome_attribute.get_alias(), dataset.get_dataset_name())
            
        if index is None:
            index = arange(dataset.size())
        original_data = dataset.get_attribute_by_index(self.outcome_attribute, index)
        
        outcome = RegressionModel.run(self, specification, coefficients, dataset, index, initial_values=original_data.astype('float32'), **kwargs)
        initial_error_name = "_init_error_%s" % self.outcome_attribute.get_alias()


        if initial_error_name not in dataset.get_known_attribute_names():
            initial_error = original_data - outcome
            dataset.add_primary_attribute(name=initial_error_name, data=zeros(dataset.size(), dtype="float32"))
            exclude_missing_values = self.run_config.get("exclude_missing_values_from_initial_error", False)
            exclude_outliers = self.run_config.get("exclude_outliers_from_initial_error", False)
            if exclude_missing_values:
                missing_value = self.run_config.get("outcome_attribute_missing_value", 0)
                initial_error[original_data == missing_value] = 0
                logger.log_status('Values equal %s were excluded from adding residuals.' % missing_value)
            if exclude_outliers:
                outlier_low = self.run_config.get("outlier_is_less_than", 0)
                initial_error[original_data < outlier_low] = 0
                outlier_high = self.run_config.get("outlier_is_greater_than", original_data.max())
                initial_error[original_data > outlier_high] = 0
                logger.log_status('Values less than %s and larger than %s were excluded from adding residuals.' % (outlier_low, outlier_high))
            dataset.set_values_of_one_attribute(initial_error_name, initial_error, index)
        else:
            initial_error = dataset.get_attribute_by_index(initial_error_name, index)
        return outcome + initial_error
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:48,代碼來源:regression_model_with_addition_initial_residuals.py

示例5: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
 def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
         data_objects=None, run_config=None, debuglevel=0):
     """ For info on the arguments see RegressionModel.
     """
     regression_outcome = RegressionModel.run(self, specification, coefficients, dataset, 
                             index=index, chunk_specification=chunk_specification, data_objects=data_objects,
                             run_config=run_config, debuglevel=debuglevel)
     if (regression_outcome == None) or (regression_outcome.size <=0):
         return regression_outcome
     if index == None:
         index = arange(dataset.size())
     result = exp(regression_outcome)
     result = result/(1.0+result)
     if  (self.attribute_to_modify not in dataset.get_known_attribute_names()):
         dataset.add_attribute(name=self.attribute_to_modify,
                                data=zeros((dataset.size(),), dtype=float32))
     dataset.set_values_of_one_attribute(self.attribute_to_modify, result, index)
     return result
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:20,代碼來源:residential_land_share_model.py

示例6: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
            data_objects=None, run_config=None, debuglevel=0):
        """ For info on the arguments see RegressionModel.
        """
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        if self.filter_attribute <> None:
            res = Resources({"debug":debuglevel})
            index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
                                               dataset_pool=self.dataset_pool, resources=res)
        housing_price = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
                                     run_config=run_config, debuglevel=debuglevel)
        if (housing_price == None) or (housing_price.size <=0):
            return housing_price
        if index == None:
             index = arange(dataset.size())
        dataset.set_values_of_one_attribute("housing_price", housing_price, index)

        return
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:21,代碼來源:housing_price_model.py

示例7: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, index=None, chunk_specification=None, 
             data_objects=None, run_config=None, debuglevel=0):
        """ For info on the arguments see RegressionModel.
        """
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        if self.filter_attribute <> None:
            res = Resources({"debug":debuglevel})
            index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
                                               dataset_pool=self.dataset_pool, resources=res)
        zeroworkers = dataset.compute_variables('household.workers == 0')
        index_zeroworker = where(zeroworkers)[0]
        #Run regression model
        incomes = RegressionModel.run(self, specification, coefficients, dataset, index_zeroworker, chunk_specification,
                                     run_config=run_config, debuglevel=debuglevel)
        dataset.set_values_of_one_attribute("income", incomes, index_zeroworker)
        #Bump up all negative incomes to zero
        negative_income = dataset.compute_variables('household.income < 0')
        index_neg_inc = where(negative_income==1)[0]
        if index_neg_inc.size > 0:
            dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)

        return
開發者ID:psrc,項目名稱:urbansim,代碼行數:25,代碼來源:zeroworker_income_model.py

示例8: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
 def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
         data_objects=None, run_config=None, debuglevel=0):
     """ For info on the arguments see RegressionModel.
     """
     if data_objects is not None:
         self.dataset_pool.add_datasets_if_not_included(data_objects)
     if self.filter <> None:
         res = Resources({"debug":debuglevel})
         index = dataset.get_filtered_index(self.filter, threshold=0, index=index, dataset_pool=self.dataset_pool,
                                            resources=res)
     ln_total_land_value = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
                                  run_config=run_config, debuglevel=debuglevel)
     if (ln_total_land_value == None) or (ln_total_land_value.size <=0):
         return ln_total_land_value
     if index == None:
          index = arange(dataset.size())
     total_land_value = exp(ln_total_land_value)
     residential_land_value = total_land_value * dataset.get_attribute_by_index("fraction_residential_land", index)
     nonresidential_land_value = total_land_value - residential_land_value
     dataset.set_values_of_one_attribute("residential_land_value", residential_land_value, index)
     dataset.set_values_of_one_attribute("nonresidential_land_value", nonresidential_land_value,
                                         index)
     self.post_check(dataset)
     return index
開發者ID:psrc,項目名稱:urbansim,代碼行數:26,代碼來源:land_price_model.py

示例9: Resources

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
 
 #create a ConsumptionDataset instance out of gridcells - simulate water demand for every gridcell
 resources = Resources({'data':{
         "grid_id":gridcells.get_id_attribute(),
         "year":year * ones(gridcells.size()),
         "month":months[0] * ones(gridcells.size()),
         "sum_demand":zeros(gridcells.size())
         }})
 this_consumption = dataset_pool.get_dataset(consumption_type)
 
 #join consumption set with weather data
 this_consumption.join(weather, name=weather_attributes, join_attribute="year", 
                  metadata=AttributeType.PRIMARY)
 #run simulation
 result = model.run(specification, coefficients, this_consumption, index=None,
                    chunk_specification={'nchunks':3},
                    data_objects=dataset_pool.datasets_in_pool())
 
 #result = exp(result)
 this_consumption.modify_attribute("sum_demand", result)
 
 #keep only those with meanful water demand pridiction, e.g. residential_units > 0 
 keep_index = where(result>0)[0]
 
 this_consumption.subset_by_index(keep_index)
 
 year_dir = os.path.join(cache_directory, str(year))
 out_storage = StorageFactory().get_storage(type="tab_storage", storage_location=year_dir)
 
 this_consumption.flush_dataset()
 print result
開發者ID:psrc,項目名稱:urbansim,代碼行數:33,代碼來源:consumption_weather_single_year_bellevue.py

示例10: run

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
    def run(self, specification, coefficients, dataset, index=None, chunk_specification=None, 
             data_objects=None, run_config=None, debuglevel=0):
        """ For info on the arguments see RegressionModel.
        """
        if data_objects is not None:
            self.dataset_pool.add_datasets_if_not_included(data_objects)
        if self.filter_attribute <> None:
            res = Resources({"debug":debuglevel})
            index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
                                               dataset_pool=self.dataset_pool, resources=res)
        ##Initialize income of 2-person households that the hh-formation models have assigned a brand new household id.
        new_2household_ids = dataset.compute_variables('(household.income==(-2))')
        initialize_2income = where(new_2household_ids == 1)[0]
        if initialize_2income.size > 0:
            dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*18593) + ((household.aggregate(person.education, function=mean))*11293) +  ((household.aggregate(person.age, function=mean))*889) - 95508)')[initialize_2income], initialize_2income)
        ##Initialize income of 1-person households that the hh-dissolution models have assigned a brand new household id.
        new_1household_ids = dataset.compute_variables('(household.income==(-1))')
        initialize_1income = where(new_1household_ids == 1)[0]
        if initialize_1income.size > 0:
            dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*24000) + ((household.aggregate(person.education, function=mean))*5590) +  ((household.aggregate(person.age, function=mean))*583) - 51957)')[initialize_1income], initialize_1income)
        ##Initialize income of 3-person households that the hh-formation models have assigned a brand new household id.
        new_3household_ids = dataset.compute_variables('(household.income==(-3))')
        initialize_3income = where(new_3household_ids == 1)[0]
        if initialize_3income.size > 0:
            dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*20078) + ((household.aggregate(person.education, function=mean))*8531) +  ((household.aggregate(person.age, function=mean))*861) - 72319)')[initialize_3income], initialize_3income)
        ##Initialize income of 4-person households that the hh-formation models have assigned a brand new household id.
        new_4household_ids = dataset.compute_variables('(household.income==(-4))')
        initialize_4income = where(new_4household_ids == 1)[0]
        if initialize_4income.size > 0:
            dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*21883) + ((household.aggregate(person.education, function=mean))*9656) +  ((household.aggregate(person.age, function=mean))*1806) - 112131)')[initialize_4income], initialize_4income)
        ##Initialize income of 5-person households that the hh-formation models have assigned a brand new household id.
        new_5household_ids = dataset.compute_variables('(household.income==(-5))')
        initialize_5income = where(new_5household_ids == 1)[0]
        if initialize_5income.size > 0:
            dataset.modify_attribute('income', dataset.compute_variables('(((household.workers)*8797) + ((household.aggregate(person.education, function=mean))*9049) +  ((household.aggregate(person.age, function=mean))*670) - 27224)')[initialize_5income], initialize_5income)
        negative_income = dataset.compute_variables('household.income < 0')
        index_neg_inc = where(negative_income==1)[0]
        if index_neg_inc.size > 0:
            dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)
        #Run regression model- all coefficients are applied here except macro employment growth, which comes next
        incomes = RegressionModel.run(self, specification, coefficients, dataset, index, chunk_specification,
                                     run_config=run_config, debuglevel=debuglevel)
        #Add to the regression equation the term for employment growth (this year's jobs / last year's jobs).  Job totals from the control total dataset.
        # current_year = SimulationState().get_current_time()
        # if current_year == 2010:
            # term_to_add = 1.04*1.82 #322729 #319190.3
        # else:
            # base_year = '2009'
            # base_cache_storage = AttributeCache().get_flt_storage_for_year(base_year)
            # control_totals = ControlTotalDataset(in_storage=base_cache_storage, in_table_name="annual_employment_control_totals")
            # number_of_jobs = control_totals.get_attribute("number_of_jobs")
            # idx_current = where(control_totals.get_attribute("year")==current_year)[0]
            # jobs_current = number_of_jobs[idx_current]
            # idx_previous = where(control_totals.get_attribute("year")==(current_year-1))[0] 
            # jobs_previous = number_of_jobs[idx_previous]
            # emp_ratio = ((jobs_current.sum())*1.0)/(jobs_previous.sum())
            # logger.log_status("empratio:  %s" % (emp_ratio))
            # term_to_add = emp_ratio * 1.82
        # incomes = incomes + term_to_add
        incomes = exp(incomes)
        if (incomes == None) or (incomes.size <=0):
            return incomes
        if index == None:
             index = arange(dataset.size())
        dataset.set_values_of_one_attribute("income", incomes, index)
        #Bump up all negative incomes to zero
        negative_income = dataset.compute_variables('household.income < 0')
        index_neg_inc = where(negative_income==1)[0]
        if index_neg_inc.size > 0:
            dataset.modify_attribute('income', zeros(index_neg_inc.size, dtype="int32"), index_neg_inc)
        ##Add code to bump down all incomes above 3million
        too_high_income = dataset.compute_variables('household.income > 5000000')
        index_too_high_income = where(too_high_income==1)[0]
        if index_too_high_income.size > 0:
            dataset.modify_attribute('income', array(index_too_high_income.size*[5000000]), index_too_high_income)

        return
開發者ID:psrc,項目名稱:urbansim,代碼行數:79,代碼來源:income_regression_model.py

示例11: run_after_estimation

# 需要導入模塊: from opus_core.regression_model import RegressionModel [as 別名]
# 或者: from opus_core.regression_model.RegressionModel import run [as 別名]
 def run_after_estimation(self, *args, **kwargs):
     return RegressionModel.run(self, *args, **kwargs)
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:4,代碼來源:regression_model_with_addition_initial_residuals.py


注:本文中的opus_core.regression_model.RegressionModel.run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。