本文整理匯總了Python中opus_core.regression_model.RegressionModel類的典型用法代碼示例。如果您正苦於以下問題:Python RegressionModel類的具體用法?Python RegressionModel怎麽用?Python RegressionModel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了RegressionModel類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
def __init__(self, group_member, datasets_grouping_attribute, **kwargs):
""" 'group_member' is of type ModelGroupMember. 'datasets_grouping_attribute' is attribute of the dataset
(passed to the 'run' and 'estimate' method) that is used for grouping.
"""
self.group_member = group_member
group_member_name = group_member.get_member_name()
self.group_member.set_agents_grouping_attribute(datasets_grouping_attribute)
self.model_name = "%s %s" % (group_member_name.capitalize(), self.model_name)
self.model_short_name = "%s %s" % (group_member_name.capitalize(), self.model_short_name),
RegressionModel.__init__(self, **kwargs)
示例2: __init__
def __init__(self, regression_procedure="opus_core.linear_regression",
filter_attribute="urbansim.gridcell.has_residential_units",
submodel_string="development_type_id",
run_config=None,
estimate_config=None,
debuglevel=0):
self.filter_attribute = filter_attribute
RegressionModel.__init__(self,
regression_procedure=regression_procedure,
submodel_string=submodel_string,
run_config=run_config,
estimate_config=estimate_config,
debuglevel=debuglevel)
示例3: __init__
def __init__(self, regression_procedure="opus_core.linear_regression",
submodel_string=None, outcome_attribute = None,
run_config=None, estimate_config=None, debuglevel=None, dataset_pool=None):
"""'outcome_attribute' must be specified in order to compute the residuals.
"""
RegressionModel.__init__(self,
regression_procedure=regression_procedure,
submodel_string=submodel_string,
run_config=run_config,
estimate_config=estimate_config,
debuglevel=debuglevel, dataset_pool=dataset_pool)
self.outcome_attribute = outcome_attribute
if (self.outcome_attribute is not None) and not isinstance(self.outcome_attribute, VariableName):
self.outcome_attribute = VariableName(self.outcome_attribute)
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:14,代碼來源:regression_model_with_addition_initial_residuals.py
示例4: run
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
dataset should be an instance of DevelopmentProjectProposalDataset, if it isn't,
create dataset on the fly with parcel and development template
index and self.filter_attribute (passed in __init___) are relative to dataset
"""
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
proposal_component_set = create_from_proposals_and_template_components(dataset,
self.dataset_pool.get_dataset('development_template_component'))
self.dataset_pool.replace_dataset(proposal_component_set.get_dataset_name(), proposal_component_set)
#proposal_component_set.flush_dataset_if_low_memory_mode()
#dataset.flush_dataset_if_low_memory_mode()
result = RegressionModel.run(self, specification, coefficients, dataset,
index=index, chunk_specification=chunk_specification, data_objects=data_objects,
run_config=run_config, debuglevel=debuglevel)
if re.search("^ln_", self.outcome_attribute_name): # if the outcome attr. name starts with 'ln_'
# the results will be exponentiated.
self.outcome_attribute_name = self.outcome_attribute_name[3:len(self.outcome_attribute_name)]
result = exp(result)
if self.outcome_attribute_name not in dataset.get_known_attribute_names():
dataset.add_primary_attribute(self.defalult_value + zeros(dataset.size()),
self.outcome_attribute_name)
dataset.set_values_of_one_attribute(self.outcome_attribute_name,
result, index=index)
self.correct_infinite_values(dataset, self.outcome_attribute_name)
return dataset
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:33,代碼來源:development_project_proposal_regression_model.py
示例5: prepare_for_run
def prepare_for_run(self, add_member_prefix=True, specification_storage=None, specification_table=None, coefficients_storage=None,
coefficients_table=None, **kwargs):
if add_member_prefix:
specification_table, coefficients_table = \
self.group_member.add_member_prefix_to_table_names([specification_table, coefficients_table])
return RegressionModel.prepare_for_run(self, specification_storage=specification_storage, specification_table=specification_table,
coefficients_storage=coefficients_storage, coefficients_table=coefficients_table, **kwargs)
示例6: __init__
def __init__(self, regression_procedure="opus_core.linear_regression",
filter_attribute=None,
submodel_string=None,
outcome_attribute=None,
run_config=None,
estimate_config=None,
debuglevel=0, dataset_pool=None):
self.filter_attribute = filter_attribute
if outcome_attribute is not None:
self.outcome_attribute = outcome_attribute
RegressionModel.__init__(self,
regression_procedure=regression_procedure,
submodel_string=submodel_string,
run_config=run_config,
estimate_config=estimate_config,
debuglevel=debuglevel, dataset_pool=dataset_pool)
示例7: __init__
def __init__(self, regression_procedure="opus_core.linear_regression",
filter = "urbansim.gridcell.is_in_development_type_group_developable",
submodel_string = "development_type_id",
run_config=None,
estimate_config=None,
debuglevel=0, dataset_pool=None):
self.filter = filter
if filter is None:
if run_config is not None and 'filter' in run_config:
self.filter = run_config["filter"]
elif estimate_config is not None and 'filter' in estimate_config:
self.filter = estimate_config["filter"]
RegressionModel.__init__(self,
regression_procedure=regression_procedure,
submodel_string=submodel_string,
run_config=run_config,
estimate_config=estimate_config,
debuglevel=debuglevel, dataset_pool=dataset_pool)
示例8: estimate
def estimate(self, specification, dataset, outcome_attribute, index=None, **kwargs):
if index is None:
index = arange(dataset.size())
data_objects = kwargs.get("data_objects",{})
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
# filter out agents for this group
new_index = self.group_member.get_index_of_my_agents(dataset, index, dataset_pool=self.dataset_pool)
return RegressionModel.estimate(self, specification, dataset, outcome_attribute,
index=index[new_index], **kwargs)
示例9: __init__
def __init__(self, regression_procedure="opus_core.linear_regression",
outcome_attribute="month_combination_2",
filter_attribute=None,
submodel_string="land_use_type_id",
run_config=None,
estimate_config=None,
debuglevel=0,
dataset_pool=None):
self.outcome_attribute = outcome_attribute
if (self.outcome_attribute is not None) and not isinstance(self.outcome_attribute, VariableName):
self.outcome_attribute = VariableName(self.outcome_attribute)
self.filter_attribute = filter_attribute
RegressionModel.__init__(self,
regression_procedure=regression_procedure,
submodel_string=submodel_string,
run_config=run_config,
estimate_config=estimate_config,
debuglevel=debuglevel,
dataset_pool=dataset_pool)
示例10: estimate
def estimate(self, specification, dataset, outcome_attribute="urbansim.gridcell.ln_total_land_value", index = None,
procedure="opus_core.estimate_linear_regression", data_objects=None,
estimate_config=None, debuglevel=0):
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter, threshold=0, index=index, dataset_pool=self.dataset_pool,
resources=res)
return RegressionModel.estimate(self, specification, dataset, outcome_attribute, index, procedure,
estimate_config=estimate_config, debuglevel=debuglevel)
示例11: get_configuration
def get_configuration(self):
return {
"init":{
"regression_procedure":{"default":"opus_core.linear_regression",
"type":str},
"submodel_string":{"default":"development_type_id",
"type":str},
"run_config":{"default":None, "type":Resources},
"estimate_config":{"default":None, "type":Resources},
"debuglevel": {"default":0, "type":int}},
"run": RegressionModel.get_configuration(self)["run"]
}
示例12: run
def run(self, specification, coefficients, dataset, index=None, **kwargs):
if index is None:
index = arange(dataset.size())
data_objects = kwargs.get("data_objects",{})
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
# filter out agents for this group
new_index = self.group_member.get_index_of_my_agents(dataset, index, dataset_pool=self.dataset_pool)
regresult = RegressionModel.run(self, specification, coefficients, dataset,
index=index[new_index], **kwargs)
result = zeros(index.size, dtype=float32)
result[new_index] = regresult
return result
示例13: run
def run(self, specification, coefficients, dataset,
index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
outcome_attribute_short = self.outcome_attribute.get_alias()
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
if self.filter_attribute <> None:
res = Resources({"debug":debuglevel})
index = dataset.get_filtered_index(self.filter_attribute, threshold=0, index=index,
dataset_pool=self.dataset_pool, resources=res)
current_year = SimulationState().get_current_time()
current_month = int( re.search('\d+$', outcome_attribute_short).group() )
# date in YYYYMM format, matching to the id_name field of weather dataset
date = int( "%d%02d" % (current_year, current_month) )
date = array([date] * dataset.size())
if "date" in dataset.get_known_attribute_names():
dataset.set_values_of_one_attribute("date", date)
else:
dataset.add_primary_attribute(date, "date")
water_demand = RegressionModel.run(self, specification, coefficients, dataset,
index, chunk_specification,
run_config=run_config, debuglevel=debuglevel)
if (water_demand == None) or (water_demand.size <=0):
return water_demand
if index == None:
index = arange(dataset.size())
if re.search("^ln_", outcome_attribute_short):
# if the outcome attr. name starts with 'ln_' the results will be exponentiated.
outcome_attribute_name = outcome_attribute_short[3:len(outcome_attribute_short)]
water_demand = exp(water_demand)
else:
outcome_attribute_name = outcome_attribute_short
if outcome_attribute_name in dataset.get_known_attribute_names():
dataset.set_values_of_one_attribute(outcome_attribute_name, water_demand, index)
else:
results = zeros(dataset.size(), dtype=water_demand.dtype)
results[index] = water_demand
dataset.add_primary_attribute(results, outcome_attribute_name)
return water_demand
示例14: run
def run(self, specification, coefficients, dataset, index=None, **kwargs):
"""
See description above. If missing values of the outcome attribute are suppose to be excluded from
the addition of the initial residuals, set an entry of run_config 'exclude_missing_values_from_initial_error' to True.
Additionaly, an entry 'outcome_attribute_missing_value' specifies the missing value (default is 0).
Similarly, if outliers are to be excluded, the run_config entry "exclude_outliers_from_initial_error" should be set to True.
In such a case, run_config entries 'outlier_is_less_than' and 'outlier_is_greater_than' can define lower and upper bounds for outliers.
By default, an outlier is a data point smaller than 0. There is no default upper bound.
"""
if self.outcome_attribute is None:
raise StandardError, "An outcome attribute must be specified for this model. Pass it into the initialization."
if self.outcome_attribute.get_alias() not in dataset.get_known_attribute_names():
try:
dataset.compute_variables(self.outcome_attribute, dataset_pool=self.dataset_pool)
except:
raise StandardError, "The outcome attribute %s must be a known attribute of the dataset %s." % (
self.outcome_attribute.get_alias(), dataset.get_dataset_name())
if index is None:
index = arange(dataset.size())
original_data = dataset.get_attribute_by_index(self.outcome_attribute, index)
outcome = RegressionModel.run(self, specification, coefficients, dataset, index, initial_values=original_data.astype('float32'), **kwargs)
initial_error_name = "_init_error_%s" % self.outcome_attribute.get_alias()
if initial_error_name not in dataset.get_known_attribute_names():
initial_error = original_data - outcome
dataset.add_primary_attribute(name=initial_error_name, data=zeros(dataset.size(), dtype="float32"))
exclude_missing_values = self.run_config.get("exclude_missing_values_from_initial_error", False)
exclude_outliers = self.run_config.get("exclude_outliers_from_initial_error", False)
if exclude_missing_values:
missing_value = self.run_config.get("outcome_attribute_missing_value", 0)
initial_error[original_data == missing_value] = 0
logger.log_status('Values equal %s were excluded from adding residuals.' % missing_value)
if exclude_outliers:
outlier_low = self.run_config.get("outlier_is_less_than", 0)
initial_error[original_data < outlier_low] = 0
outlier_high = self.run_config.get("outlier_is_greater_than", original_data.max())
initial_error[original_data > outlier_high] = 0
logger.log_status('Values less than %s and larger than %s were excluded from adding residuals.' % (outlier_low, outlier_high))
dataset.set_values_of_one_attribute(initial_error_name, initial_error, index)
else:
initial_error = dataset.get_attribute_by_index(initial_error_name, index)
return outcome + initial_error
開發者ID:christianurich,項目名稱:VIBe2UrbanSim,代碼行數:46,代碼來源:regression_model_with_addition_initial_residuals.py
示例15: run
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, debuglevel=0):
""" For info on the arguments see RegressionModel.
"""
regression_outcome = RegressionModel.run(self, specification, coefficients, dataset,
index=index, chunk_specification=chunk_specification, data_objects=data_objects,
run_config=run_config, debuglevel=debuglevel)
if (regression_outcome == None) or (regression_outcome.size <=0):
return regression_outcome
if index == None:
index = arange(dataset.size())
result = exp(regression_outcome)
result = result/(1.0+result)
if (self.attribute_to_modify not in dataset.get_known_attribute_names()):
dataset.add_attribute(name=self.attribute_to_modify,
data=zeros((dataset.size(),), dtype=float32))
dataset.set_values_of_one_attribute(self.attribute_to_modify, result, index)
return result