當前位置: 首頁>>代碼示例>>Python>>正文


Python MonitorMixinBase.mmPrettyPrintTraces方法代碼示例

本文整理匯總了Python中nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase.mmPrettyPrintTraces方法的典型用法代碼示例。如果您正苦於以下問題:Python MonitorMixinBase.mmPrettyPrintTraces方法的具體用法?Python MonitorMixinBase.mmPrettyPrintTraces怎麽用?Python MonitorMixinBase.mmPrettyPrintTraces使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase的用法示例。


在下文中一共展示了MonitorMixinBase.mmPrettyPrintTraces方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
def run(tm, mutate_times, sequences, alphabet, feedback_seq=None, mutation=0, verbose=0):

  allLabels = []
  tm.reset()
  for j, sensorPattern in enumerate(sequences):
    if sensorPattern is None:
      tm.reset()
    else:
      if j in mutate_times:
        if mutation:
          continue
        else:
          sensorPattern = set([random.randint(0, 2047) for _ in sensorPattern])

      if feedback_seq is not None:
        feedback = feedback_seq[j]
      else:
        feedback = set()

      tm.compute(sensorPattern, activeApicalCells=feedback,
                 learn=True, sequenceLabel=None)

      allLabels.append(labelPattern(sensorPattern, alphabet))

  ys = [len(x) for x in tm.mmGetTraceUnpredictedActiveColumns().data]

  if verbose > 0:
    print " TM metrics on test sequence"
    print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

  if verbose > 1:
    print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                               breakOnResets=tm.mmGetTraceResets())

  return ys, allLabels
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:37,代碼來源:feedback_experiment.py

示例2: train

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
def train(tm, sequences, feedback_seq=None, trials=trials,
          feedback_buffer=10, clearhistory=True, verbose=0):

  for i in range(trials):
    for j, sensorPattern in enumerate(sequences):
      if sensorPattern is None:
        tm.reset()
      else:
        if i<feedback_buffer:
          feedback = set([random.randint(0, 2047) for _ in range(feedback_n)])
        elif feedback_seq is not None:
          feedback = feedback_seq[j]
        else:
          feedback = set()
        tm.compute(sensorPattern, activeApicalCells=feedback,
                   learn=True, sequenceLabel=None)

    if clearhistory:
      if i == trials-1:
        if verbose > 0:
          print " TM metrics after training"
          print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

        if verbose > 1:
          print " TM traces after training"
          print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                                     breakOnResets=tm.mmGetTraceResets())

      tm.mmClearHistory()
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:31,代碼來源:feedback_experiment.py

示例3: trainUP

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
def trainUP(tm, sequences, up=None, trials=trials, clearhistory=True, verbose=0):

  for i in range(trials):
    for j, sensorPattern in enumerate(sequences):
      if sensorPattern is None:
        tm.reset()
        if up is not None:
          up.reset()
      else:
        if up is None:
          feedback = set()
        else:
          feedback = set(np.nonzero(up.getUnionSDR())[0])
        tm.compute(sensorPattern, activeApicalCells=feedback,
                   learn=True, sequenceLabel=None)
        if up is not None:
          activeCells, predActiveCells, burstingCols, = getUnionTemporalPoolerInput(tm)
          up.compute(activeCells, predActiveCells, learn=False)

    if clearhistory:
      if i == trials-1:
        if verbose > 0:
          print " TM metrics after training"
          print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

        if verbose > 1:
          print " TM traces after training"
          print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                                     breakOnResets=tm.mmGetTraceResets())

      tm.mmClearHistory()
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:33,代碼來源:feedback_experiment.py

示例4: runNetworkOnSequences

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
  def runNetworkOnSequences(self, inputSequences, inputCategories, tmLearn=True,
                            upLearn=None, classifierLearn=False, verbosity=0,
                            progressInterval=None):
    """
    Runs Union Pooler network on specified sequence.

    @param inputSequences           One or more sequences of input patterns.
                                    Each should be terminated with None.

    @param inputCategories          A sequence of category representations
                                    for each element in inputSequences
                                    Each should be terminated with None.

    @param tmLearn:   (bool)        Temporal Memory learning mode
    @param upLearn:   (None, bool)  Union Pooler learning mode. If None,
                                    Union Pooler will not be run.
    @param classifierLearn: (bool)  Classifier learning mode

    @param progressInterval: (int)  Interval of console progress updates
                                    in terms of timesteps.
    """

    currentTime = time.time()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=inputCategory)

      if classifierLearn and sensorPattern is not None:
        unionSDR = self.up.getUnionSDR()
        upCellCount = self.up.getColumnDimensions()
        self.classifier.learn(unionSDR, inputCategory, isSparse=upCellCount)
        if verbosity > 1:
          pprint.pprint("{0} is category {1}".format(unionSDR, inputCategory))

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(inputSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
開發者ID:chanceraine,項目名稱:nupic.research,代碼行數:61,代碼來源:union_pooler_experiment.py

示例5: _printInfo

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
  def _printInfo(self):
    if VERBOSITY >= 2:
      print MonitorMixinBase.mmPrettyPrintTraces(
        self.tp.mmGetDefaultTraces(verbosity=3) +
        self.tm.mmGetDefaultTraces(verbosity=3),
        breakOnResets=self.tm.mmGetTraceResets())
      print

    if VERBOSITY >= 1:
      print MonitorMixinBase.mmPrettyPrintMetrics(
        self.tp.mmGetDefaultMetrics() + self.tm.mmGetDefaultMetrics())
      print
開發者ID:Starcounter-Jack,項目名稱:nupic.research,代碼行數:14,代碼來源:stp_test.py

示例6: feedLayers

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
  def feedLayers(self, sequences, tmLearn=True, tpLearn=None, verbosity=0,
                 showProgressInterval=None):
    """
    Feed the given sequences to the HTM algorithms.

    @param tmLearn:   (bool)      Either False, or True
    @param tpLearn:   (None,bool) Either None, False, or True. If None,
                                  temporal pooler will be skipped.

    @param showProgressInterval: (int) Prints progress every N iterations,
                                       where N is the value of this param
    """
    (sensorSequence,
     motorSequence,
     sensorimotorSequence,
     sequenceLabels) = sequences

    currentTime = time.time()

    for i in xrange(len(sensorSequence)):
      sensorPattern = sensorSequence[i]
      motorPattern = motorSequence[i]
      sensorimotorPattern = sensorimotorSequence[i]
      sequenceLabel = sequenceLabels[i]

      self.feedTransition(sensorPattern, motorPattern, sensorimotorPattern,
                          tmLearn=tmLearn, tpLearn=tpLearn,
                          sequenceLabel=sequenceLabel)

      if (showProgressInterval is not None and
          i > 0 and
          i % showProgressInterval == 0):
        print ("Fed {0} / {1} elements of the sequence "
               "in {2:0.2f} seconds.".format(
                 i, len(sensorSequence), time.time() - currentTime))
        currentTime = time.time()

    if verbosity >= 2:
      # Print default TM traces
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if tpLearn is not None:
        # Print default TP traces
        traces = self.tp.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.tp.mmGetTraceResets())
      print
開發者ID:oxtopus,項目名稱:nupic.research,代碼行數:53,代碼來源:sensorimotor_experiment_runner.py

示例7: runNetworkOnSequence

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
  def runNetworkOnSequence(self, sensorSequences, sequencesLabels, tmLearn=True,
                           upLearn=None, verbosity=0, progressInterval=None):
    """
    Runs Union Pooler network on specified sequence.

    @param sensorSequences        A sequence of sensor sequences. Each
                                  sequence is terminated by None.

    @param sequenceLabels         A sequence of string representations of the
                                  current sequence. Each sequence is terminated
                                  by None.

    @param tmLearn:   (bool)      Either False, or True
    @param upLearn:   (None,bool) Either None, False, or True. If None,
                                  union pooler will be skipped.

    @param progressInterval: (int) Prints progress every N iterations,
                                   where N is the value of this param
    """

    currentTime = time.time()

    for i in xrange(len(sensorSequences)):
      sensorPattern = sensorSequences[i]
      sequenceLabel = sequencesLabels[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=sequenceLabel)

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(sensorSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
開發者ID:luisandresilva,項目名稱:nupic.research,代碼行數:53,代碼來源:union_pooler_experiment.py

示例8: runUP

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
def runUP(tm, mutate_times, sequences, alphabet, up=None, mutation=0, verbose=0):

  allLabels = []

  for j, sensorPattern in enumerate(sequences):
    if sensorPattern is None:
      tm.reset()
    else:
      if j in mutate_times:
        if mutation:
          continue
        else:
          sensorPattern = set([random.randint(0, 2047) for _ in sensorPattern])

      if up is None:
        feedback = set()
      else:
        feedback = set(np.nonzero(up.getUnionSDR())[0])

      tm.compute(sensorPattern, activeApicalCells=feedback,
                 learn=True, sequenceLabel=None)

      if up is not None:
        activeCells, predActiveCells, burstingCols, = getUnionTemporalPoolerInput(tm)
        up.compute(activeCells, predActiveCells, learn=False)

      allLabels.append(labelPattern(sensorPattern, alphabet))

  ys = [len(x) for x in tm.mmGetTraceUnpredictedActiveColumns().data]

  if verbose > 0:
    print " TM metrics on test sequence"
    print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

  if verbose > 1:
    print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                               breakOnResets=tm.mmGetTraceResets())

  return ys, allLabels
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:41,代碼來源:feedback_experiment.py

示例9: feedLayers

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
  def feedLayers(self, sequences, tmLearn, tpLearn=None, verbosity=0,
                 showProgressInterval=None):
    """
    Feed the given sequences to the HTM algorithms.

    @param tmLearn:   (bool)      Either False, or True
    @param tpLearn:   (None,bool) Either None, False, or True. If None,
                                  temporal pooler will be skipped.

    @param showProgressInterval: (int) Prints progress every N iterations,
                                       where N is the value of this param
    """
    (sensorSequence,
     motorSequence,
     sensorimotorSequence,
     sequenceLabels) = sequences

    self.tm.mmClearHistory()
    self.tp.mmClearHistory()

    currentTime = time.time()

    for i in xrange(len(sensorSequence)):
      sensorPattern = sensorSequence[i]
      sensorimotorPattern = sensorimotorSequence[i]
      sequenceLabel = sequenceLabels[i]

      if sensorPattern is None:
        self.tm.reset()
        self.tp.reset()

      else:
        # Feed the TM
        self.tm.compute(sensorPattern,
                  activeExternalCells=sensorimotorPattern,
                  formInternalConnections=False,
                  learn=tmLearn,
                  sequenceLabel=sequenceLabel)

        # If requested, feed the TP
        if tpLearn is not None:
          tpInputVector, burstingColumns, correctlyPredictedCells = (
              self.formatInputForTP())
          activeArray = numpy.zeros(self.tp.getNumColumns())

          self.tp.compute(tpInputVector,
                          tpLearn,
                          activeArray,
                          burstingColumns,
                          correctlyPredictedCells,
                          sequenceLabel=sequenceLabel)

        if (showProgressInterval is not None and
            i > 0 and
            i % showProgressInterval == 0):
          print ("Fed {0} / {1} elements of the sequence "
                 "in {2:0.2f} seconds.".format(
                   i, len(sensorSequence), time.time() - currentTime))
          currentTime = time.time()

    if verbosity >= 2:
      traces = []
      traces += self.tm.mmGetDefaultTraces(verbosity=verbosity)
      if tpLearn is not None:
        traces += self.tp.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(
        traces, breakOnResets=self.tm.mmGetTraceResets())
      print
開發者ID:breznak,項目名稱:nupic.research,代碼行數:70,代碼來源:sensorimotor_experiment_runner.py

示例10: main

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintTraces [as 別名]
def main():
  print "Initializing robot..."
  robot = Robot()
  print "Initializing model..."
  model = Model()
  print "Initializing plot..."
  plot = Plot(model)
  print "Initializing classifier..."
  classifier = Classifier()

  with open(OUTFILE_PATH, "wb") as csvFile:
    csvWriter = csv.writer(csvFile)

    for i in count(1):
      behaviorType = None
      while behaviorType is None:
        behaviorType = raw_input("Enter behavior type: "
                                 "Exhaustive (e), Random (r), "
                                 "Sweep (s), User (u): ")
        behaviorType = behaviorType if behaviorType in ["e", "r", "s", "u"] else None

      targets = None
      while targets is None:
        try:
          targets = input("Enter targets (Python code returning a list): ")
          targets = targets if type(targets) is list and len(targets) else None
        except: pass


      def callback(sensorValue, current, target):
        motorValue = target - current
        row = [sensorValue, motorValue, i]
        csvWriter.writerow(row)
        csvFile.flush()

        model.feed(sensorValue, motorValue, sequenceLabel=i)
        tpActiveCells = model.experimentRunner.tp.mmGetTraceActiveCells().data[-1]
        classification = classifier.feed(tpActiveCells)

        print "Current: {0}\tSensor: {1}\tNext: {2}\tClassification: {3}".format(
          current, sensorValue, target, classification)

        if classification is not None:
          robot.playTune(classification)

        plot.update(model)


      if behaviorType == "s":
        sweep(targets, robot, callback)
      elif behaviorType == "e":
        exhaustive(targets, robot, callback)
      elif behaviorType == "r":
        randomlyExplore(targets, robot, callback)

      print MonitorMixinBase.mmPrettyPrintTraces(
        model.experimentRunner.tm.mmGetDefaultTraces(verbosity=2) +
        model.experimentRunner.tp.mmGetDefaultTraces(verbosity=2),
        breakOnResets=model.experimentRunner.tm.mmGetTraceResets())

      print MonitorMixinBase.mmPrettyPrintMetrics(
        model.experimentRunner.tm.mmGetDefaultMetrics() +
        model.experimentRunner.tp.mmGetDefaultMetrics())

      robot.reset()

      doReset = None
      while doReset is None:
        doReset = raw_input("Reset (y/n)? ")
        doReset = doReset if doReset in ["y", "n"] else None

      if doReset == "y":
        model.experimentRunner.tm.reset()
        model.experimentRunner.tp.reset()

      model.experimentRunner.tm.mmClearHistory()
      model.experimentRunner.tp.mmClearHistory()
開發者ID:chetan51,項目名稱:saccadebot,代碼行數:79,代碼來源:run-robot.py


注:本文中的nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase.mmPrettyPrintTraces方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。