當前位置: 首頁>>代碼示例>>Python>>正文


Python MonitorMixinBase.mmPrettyPrintMetrics方法代碼示例

本文整理匯總了Python中nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase.mmPrettyPrintMetrics方法的典型用法代碼示例。如果您正苦於以下問題:Python MonitorMixinBase.mmPrettyPrintMetrics方法的具體用法?Python MonitorMixinBase.mmPrettyPrintMetrics怎麽用?Python MonitorMixinBase.mmPrettyPrintMetrics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase的用法示例。


在下文中一共展示了MonitorMixinBase.mmPrettyPrintMetrics方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: trainTwoPass

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def trainTwoPass(runner, exhaustiveAgents, completeSequenceLength, verbosity):
  print "Training temporal memory..."
  sequences = runner.generateSequences(completeSequenceLength *
                                       TWOPASS_TM_TRAINING_REPS,
                                       exhaustiveAgents,
                                       verbosity=verbosity)
  runner.feedLayers(sequences, tmLearn=True, tpLearn=False,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print
  print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() +
                                              runner.tm.mmGetDefaultMetrics())
  print
  print "Training temporal pooler..."

  runner.tm.mmClearHistory()
  runner.tp.mmClearHistory()
  sequences = runner.generateSequences(completeSequenceLength *
                                       TWOPASS_TP_TRAINING_REPS,
                                       exhaustiveAgents,
                                       verbosity=verbosity)
  runner.feedLayers(sequences, tmLearn=False, tpLearn=True,
                    verbosity=verbosity,
                    showProgressInterval=SHOW_PROGRESS_INTERVAL)
  print
  print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() +
                                              runner.tm.mmGetDefaultMetrics())
  print
開發者ID:Starcounter-Jack,項目名稱:nupic.research,代碼行數:30,代碼來源:experimentCosynePlot.py

示例2: train

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def train(tm, sequences, feedback_seq=None, trials=trials,
          feedback_buffer=10, clearhistory=True, verbose=0):

  for i in range(trials):
    for j, sensorPattern in enumerate(sequences):
      if sensorPattern is None:
        tm.reset()
      else:
        if i<feedback_buffer:
          feedback = set([random.randint(0, 2047) for _ in range(feedback_n)])
        elif feedback_seq is not None:
          feedback = feedback_seq[j]
        else:
          feedback = set()
        tm.compute(sensorPattern, activeApicalCells=feedback,
                   learn=True, sequenceLabel=None)

    if clearhistory:
      if i == trials-1:
        if verbose > 0:
          print " TM metrics after training"
          print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

        if verbose > 1:
          print " TM traces after training"
          print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                                     breakOnResets=tm.mmGetTraceResets())

      tm.mmClearHistory()
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:31,代碼來源:feedback_experiment.py

示例3: runTMtrainingPhase

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def runTMtrainingPhase(experiment):

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      # experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
開發者ID:chanceraine,項目名稱:nupic.research,代碼行數:30,代碼來源:tp_trained_tm_backwardLearning.py

示例4: trainTemporalMemory

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def trainTemporalMemory(experiment, inputSequences, inputCategories,
                        trainingPasses, consoleVerbosity):
  burstingColsString = ""
  for i in xrange(trainingPasses):
    experiment.runNetworkOnSequences(inputSequences,
                                     inputCategories,
                                     tmLearn=True,
                                     upLearn=None,
                                     classifierLearn=False,
                                     verbosity=consoleVerbosity,
                                     progressInterval=_SHOW_PROGRESS_INTERVAL)

    if consoleVerbosity > 1:
      print
      print MonitorMixinBase.mmPrettyPrintMetrics(
        experiment.tm.mmGetDefaultMetrics())
      print
    stats = experiment.getBurstingColumnsStats()
    burstingColsString += "{0}\t{1}\t{2}\t{3}\n".format(i, stats[0], stats[1],
                                                        stats[2])

    experiment.tm.mmClearHistory()
    experiment.up.mmClearHistory()

  if consoleVerbosity > 0:
    print "\nTemporal Memory Bursting Columns stats..."
    print "Pass\tMean\t\tStdDev\t\tMax"
    print burstingColsString
開發者ID:akhilaananthram,項目名稱:nupic.research,代碼行數:30,代碼來源:variation_robustness_experiment.py

示例5: trainUP

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def trainUP(tm, sequences, up=None, trials=trials, clearhistory=True, verbose=0):

  for i in range(trials):
    for j, sensorPattern in enumerate(sequences):
      if sensorPattern is None:
        tm.reset()
        if up is not None:
          up.reset()
      else:
        if up is None:
          feedback = set()
        else:
          feedback = set(np.nonzero(up.getUnionSDR())[0])
        tm.compute(sensorPattern, activeApicalCells=feedback,
                   learn=True, sequenceLabel=None)
        if up is not None:
          activeCells, predActiveCells, burstingCols, = getUnionTemporalPoolerInput(tm)
          up.compute(activeCells, predActiveCells, learn=False)

    if clearhistory:
      if i == trials-1:
        if verbose > 0:
          print " TM metrics after training"
          print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

        if verbose > 1:
          print " TM traces after training"
          print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                                     breakOnResets=tm.mmGetTraceResets())

      tm.mmClearHistory()
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:33,代碼來源:feedback_experiment.py

示例6: run

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def run(tm, mutate_times, sequences, alphabet, feedback_seq=None, mutation=0, verbose=0):

  allLabels = []
  tm.reset()
  for j, sensorPattern in enumerate(sequences):
    if sensorPattern is None:
      tm.reset()
    else:
      if j in mutate_times:
        if mutation:
          continue
        else:
          sensorPattern = set([random.randint(0, 2047) for _ in sensorPattern])

      if feedback_seq is not None:
        feedback = feedback_seq[j]
      else:
        feedback = set()

      tm.compute(sensorPattern, activeApicalCells=feedback,
                 learn=True, sequenceLabel=None)

      allLabels.append(labelPattern(sensorPattern, alphabet))

  ys = [len(x) for x in tm.mmGetTraceUnpredictedActiveColumns().data]

  if verbose > 0:
    print " TM metrics on test sequence"
    print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

  if verbose > 1:
    print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                               breakOnResets=tm.mmGetTraceResets())

  return ys, allLabels
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:37,代碼來源:feedback_experiment.py

示例7: runNetworkOnSequences

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
  def runNetworkOnSequences(self, inputSequences, inputCategories, tmLearn=True,
                            upLearn=None, classifierLearn=False, verbosity=0,
                            progressInterval=None):
    """
    Runs Union Pooler network on specified sequence.

    @param inputSequences           One or more sequences of input patterns.
                                    Each should be terminated with None.

    @param inputCategories          A sequence of category representations
                                    for each element in inputSequences
                                    Each should be terminated with None.

    @param tmLearn:   (bool)        Temporal Memory learning mode
    @param upLearn:   (None, bool)  Union Pooler learning mode. If None,
                                    Union Pooler will not be run.
    @param classifierLearn: (bool)  Classifier learning mode

    @param progressInterval: (int)  Interval of console progress updates
                                    in terms of timesteps.
    """

    currentTime = time.time()
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=inputCategory)

      if classifierLearn and sensorPattern is not None:
        unionSDR = self.up.getUnionSDR()
        upCellCount = self.up.getColumnDimensions()
        self.classifier.learn(unionSDR, inputCategory, isSparse=upCellCount)
        if verbosity > 1:
          pprint.pprint("{0} is category {1}".format(unionSDR, inputCategory))

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(inputSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
開發者ID:chanceraine,項目名稱:nupic.research,代碼行數:61,代碼來源:union_pooler_experiment.py

示例8: trainOnline

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def trainOnline(runner, exhaustiveAgents, completeSequenceLength, reps, verbosity):
    print "Training temporal memory and temporal pooler..."
    sequences = runner.generateSequences(completeSequenceLength * reps, exhaustiveAgents, verbosity=verbosity)
    runner.feedLayers(
        sequences, tmLearn=True, tpLearn=True, verbosity=verbosity, showProgressInterval=SHOW_PROGRESS_INTERVAL
    )
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
開發者ID:jaredweiss,項目名稱:nupic.research,代碼行數:11,代碼來源:experimentCosynePlot.py

示例9: _printInfo

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
  def _printInfo(self):
    if VERBOSITY >= 2:
      print MonitorMixinBase.mmPrettyPrintTraces(
        self.tp.mmGetDefaultTraces(verbosity=3) +
        self.tm.mmGetDefaultTraces(verbosity=3),
        breakOnResets=self.tm.mmGetTraceResets())
      print

    if VERBOSITY >= 1:
      print MonitorMixinBase.mmPrettyPrintMetrics(
        self.tp.mmGetDefaultMetrics() + self.tm.mmGetDefaultMetrics())
      print
開發者ID:Starcounter-Jack,項目名稱:nupic.research,代碼行數:14,代碼來源:stp_test.py

示例10: runNetworkOnSequence

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
  def runNetworkOnSequence(self, sensorSequences, sequencesLabels, tmLearn=True,
                           upLearn=None, verbosity=0, progressInterval=None):
    """
    Runs Union Pooler network on specified sequence.

    @param sensorSequences        A sequence of sensor sequences. Each
                                  sequence is terminated by None.

    @param sequenceLabels         A sequence of string representations of the
                                  current sequence. Each sequence is terminated
                                  by None.

    @param tmLearn:   (bool)      Either False, or True
    @param upLearn:   (None,bool) Either None, False, or True. If None,
                                  union pooler will be skipped.

    @param progressInterval: (int) Prints progress every N iterations,
                                   where N is the value of this param
    """

    currentTime = time.time()

    for i in xrange(len(sensorSequences)):
      sensorPattern = sensorSequences[i]
      sequenceLabel = sequencesLabels[i]

      self.runNetworkOnPattern(sensorPattern,
                               tmLearn=tmLearn,
                               upLearn=upLearn,
                               sequenceLabel=sequenceLabel)

      if progressInterval is not None and i > 0 and i % progressInterval == 0:
        elapsed = (time.time() - currentTime) / 60.0
        print ("Ran {0} / {1} elements of sequence in "
               "{2:0.2f} minutes.".format(i, len(sensorSequences), elapsed))
        currentTime = time.time()
        print MonitorMixinBase.mmPrettyPrintMetrics(
          self.tm.mmGetDefaultMetrics())

    if verbosity >= 2:
      traces = self.tm.mmGetDefaultTraces(verbosity=verbosity)
      print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                 breakOnResets=
                                                 self.tm.mmGetTraceResets())

      if upLearn is not None:
        traces = self.up.mmGetDefaultTraces(verbosity=verbosity)
        print MonitorMixinBase.mmPrettyPrintTraces(traces,
                                                   breakOnResets=
                                                   self.up.mmGetTraceResets())
      print
開發者ID:luisandresilva,項目名稱:nupic.research,代碼行數:53,代碼來源:union_pooler_experiment.py

示例11: runTestPhase

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def runTestPhase(runner, randomAgents, numWorlds, numElements, completeSequenceLength, verbosity):
    print "Testing (worlds: {0}, elements: {1})...".format(numWorlds, numElements)
    runner.tm.mmClearHistory()
    runner.tp.mmClearHistory()
    sequences = runner.generateSequences(
        completeSequenceLength / NUM_TEST_SEQUENCES, randomAgents, verbosity=verbosity, numSequences=NUM_TEST_SEQUENCES
    )
    runner.feedLayers(
        sequences, tmLearn=False, tpLearn=False, verbosity=verbosity, showProgressInterval=SHOW_PROGRESS_INTERVAL
    )
    print "Done testing.\n"
    if verbosity >= 2:
        print "Overlap:"
        print
        print runner.tp.mmPrettyPrintDataOverlap()
        print
    print MonitorMixinBase.mmPrettyPrintMetrics(runner.tp.mmGetDefaultMetrics() + runner.tm.mmGetDefaultMetrics())
    print
開發者ID:jaredweiss,項目名稱:nupic.research,代碼行數:20,代碼來源:experimentCosynePlot.py

示例12: runUP

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def runUP(tm, mutate_times, sequences, alphabet, up=None, mutation=0, verbose=0):

  allLabels = []

  for j, sensorPattern in enumerate(sequences):
    if sensorPattern is None:
      tm.reset()
    else:
      if j in mutate_times:
        if mutation:
          continue
        else:
          sensorPattern = set([random.randint(0, 2047) for _ in sensorPattern])

      if up is None:
        feedback = set()
      else:
        feedback = set(np.nonzero(up.getUnionSDR())[0])

      tm.compute(sensorPattern, activeApicalCells=feedback,
                 learn=True, sequenceLabel=None)

      if up is not None:
        activeCells, predActiveCells, burstingCols, = getUnionTemporalPoolerInput(tm)
        up.compute(activeCells, predActiveCells, learn=False)

      allLabels.append(labelPattern(sensorPattern, alphabet))

  ys = [len(x) for x in tm.mmGetTraceUnpredictedActiveColumns().data]

  if verbose > 0:
    print " TM metrics on test sequence"
    print MonitorMixinBase.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics())

  if verbose > 1:
    print MonitorMixinBase.mmPrettyPrintTraces(tm.mmGetDefaultTraces(verbosity=True),
                                               breakOnResets=tm.mmGetTraceResets())

  return ys, allLabels
開發者ID:hernandezurbina,項目名稱:nupic.research,代碼行數:41,代碼來源:feedback_experiment.py

示例13: run

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the noise robustness experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        testPresentations - Number of sequences presented in test phase
        perturbationChance - Chance of sequence perturbations during test phase
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionPoolerParams - A dict of Union Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  print "Running Noise robustness experiment...\n"
  print "Params dir: {0}".format(os.path.join(os.path.dirname(__file__),
                                              paramDir))
  print "Output dir: {0}\n".format(os.path.join(os.path.dirname(__file__),
                                                outputDir))

  patternDimensionality = params["patternDimensionality"]
  patternCardinality = params["patternCardinality"]
  sequenceLength = params["sequenceLength"]
  sequenceCount = params["numberOfSequences"]
  trainingPasses = params["trainingPasses"]
  testPresentations = params["testPresentations"]
  perturbationChance = params["perturbationChance"]
  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # TODO If this parameter is to be supported, the sequence generation
  # code below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "Generating sequences..."
  patternAlphabetSize = sequenceLength * sequenceCount
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(sequenceCount, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(sequenceCount)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"

    for i in xrange(trainingPasses):

      experiment.runNetworkOnSequence(generatedSequences,
                                      labeledSequences,
                                      tmLearn=True,
                                      upLearn=None,
                                      verbosity=consoleVerbosity,
                                      progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      # experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
    if plotVerbosity >= 2:
      plotNetworkState(experiment, plotVerbosity, trainingPasses,
                       phase="Training")

  print "\nRunning test phase..."

  # Input sequence pattern by pattern. Sequence-to-sequence
#.........這裏部分代碼省略.........
開發者ID:lessc0de,項目名稱:nupic.research,代碼行數:103,代碼來源:noise_robustness_experiment.py

示例14: run

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the union overlap experiment.

  :param params: A dict of experiment parameters
  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  print "Running SDR overlap experiment...\n"
  print "Params dir: {0}".format(paramDir)
  print "Output dir: {0}\n".format(outputDir)

  # Dimensionality of sequence patterns
  patternDimensionality = params["patternDimensionality"]

  # Cardinality (ON / true bits) of sequence patterns
  patternCardinality = params["patternCardinality"]

  # TODO If this parameter is to be supported, the sequence generation code
  # below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Length of sequences shown to network
  sequenceLength = params["sequenceLength"]

  # Number of sequences used. Sequences may share common elements.
  numberOfSequences = params["numberOfSequences"]

  # Number of sequence passes for training the TM. Zero => no training.
  trainingPasses = params["trainingPasses"]

  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "\nGenerating sequences..."
  patternAlphabetSize = sequenceLength * numberOfSequences
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(numberOfSequences)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionTemporalPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
    if plotVerbosity >= 2:
      plotNetworkState(experiment, plotVerbosity, trainingPasses,
                       phase="Training")

  print "\nRunning test phase..."
  experiment.runNetworkOnSequences(generatedSequences,
                                   labeledSequences,
                                   tmLearn=False,
                                   upLearn=False,
                                   verbosity=consoleVerbosity,
                                   progressInterval=_SHOW_PROGRESS_INTERVAL)

  print "\nPass\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
#.........這裏部分代碼省略.........
開發者ID:Starcounter-Jack,項目名稱:nupic.research,代碼行數:103,代碼來源:union_sdr_overlap_experiment.py

示例15: run

# 需要導入模塊: from nupic.research.monitor_mixin.monitor_mixin_base import MonitorMixinBase [as 別名]
# 或者: from nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase import mmPrettyPrintMetrics [as 別名]
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the Union Pooler capacity experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionPoolerParams - A dict of Union Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  start = time.time()
  print "Running Union Pooler Capacity Experiment...\n"
  print "Params dir: {0}".format(os.path.join(os.path.dirname(__file__),
                                              paramDir))
  print "Output dir: {0}\n".format(os.path.join(os.path.dirname(__file__),
                                                outputDir))

  patternDimensionality = params["patternDimensionality"]
  patternCardinality = params["patternCardinality"]
  sequenceLength = params["sequenceLength"]
  sequenceCount = params["numberOfSequences"]
  trainingPasses = params["trainingPasses"]
  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate input data
  inputSequences, seqLabels = generateSequences(patternDimensionality,
                                                patternCardinality,
                                                sequenceLength,
                                                sequenceCount)

  print "\nCreating Network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train the Temporal Memory on the generated sequences
  print "\nTraining Temporal Memory..."
  for i in xrange(trainingPasses):
    print "\nTraining pass {0} ...\n".format(i)
    experiment.runNetworkOnSequences(inputSequences,
                                     seqLabels,
                                     tmLearn=True,
                                     upLearn=None,
                                     verbosity=consoleVerbosity,
                                     progressInterval=_SHOW_PROGRESS_INTERVAL)

    if consoleVerbosity > 0:
      stats = experiment.getBurstingColumnsStats()
      print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"
      print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
    experiment.tm.mmGetDefaultMetrics())
  print
  experiment.tm.mmClearHistory()

  # Run test phase recording Union SDRs
  unionSdrs = runTestPhase(experiment, inputSequences, seqLabels, sequenceCount,
                           sequenceLength, consoleVerbosity)

  # Output distinctness metric
  print "\nSequences\tDistinctness Ave\tStdDev\tMax"
  ave, stdDev, maxDist = getDistinctness(unionSdrs)
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, ave, stdDev, maxDist)

  # Check bursting columns metric during test phase
  print "\nSequences\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, stats[0], stats[1], stats[2])
  if trainingPasses > 0 and stats[0] > 0:
    print "***Warning! Mean bursing columns > 0 in test phase***"

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  print "Total time: {0:2} seconds.".format(int(time.time() - start))
開發者ID:chanceraine,項目名稱:nupic.research,代碼行數:89,代碼來源:capacity_experiment.py


注:本文中的nupic.research.monitor_mixin.monitor_mixin_base.MonitorMixinBase.mmPrettyPrintMetrics方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。