當前位置: 首頁>>代碼示例>>Python>>正文


Python Engine.neighbours方法代碼示例

本文整理匯總了Python中nearpy.Engine.neighbours方法的典型用法代碼示例。如果您正苦於以下問題:Python Engine.neighbours方法的具體用法?Python Engine.neighbours怎麽用?Python Engine.neighbours使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nearpy.Engine的用法示例。


在下文中一共展示了Engine.neighbours方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: TestEngine

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class TestEngine(unittest.TestCase):

    def setUp(self):
        self.engine = Engine(1000)

    def test_retrieval(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = numpy.random.randn(1000)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y = n[0][0]
            y_data = n[0][1]
            y_distance = n[0][2]
            self.assertTrue((y == x).all())
            self.assertEqual(y_data, x_data)
            self.assertEqual(y_distance, 0.0)

    def test_retrieval_sparse(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = scipy.sparse.rand(1000, 1, density=0.05)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y = n[0][0]
            y_data = n[0][1]
            y_distance = n[0][2]
            self.assertTrue((y - x).sum() == 0.0)
            self.assertEqual(y_data, x_data)
            self.assertEqual(y_distance, 0.0)
開發者ID:MarcCote,項目名稱:NearPy,代碼行數:34,代碼來源:engine_tests.py

示例2: NearPy

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class NearPy(NearestNeighbor):
    def __init__(self, dist=EuclideanDistance(), phi=lambda x: x):
        NearestNeighbor.__init__(self, dist, phi)

    def _create_engine(self, k, lshashes=None):
        self.k_ = k
        self.engine_ = Engine(self.dimension_, lshashes,
                              distance=self.dist_metric_,
                              vector_filters=[NearestFilter(k)])

        for i, feature in enumerate(self.featurized_):
            if self.transpose_:
                self.engine_.store_vector(feature.T, i)
            else:
                self.engine_.store_vector(feature, i)

    def train(self, data, k=10):
        self.data_ = np.array(data)
        self.featurized_ = self.featurize(data)

        shape = featurized[0].shape
        assert len(shape) <= 2, 'Feature shape must be (1, N), (N, 1), or (N,)'
        if len(shape) == 1:
            self.transpose_ = False
            self.dimension_ = shape[0]
        else:
            assert 1 in shape, 'Feature shape must be (1, N) or (N, 1)'
            self.transpose_ = (shape[0] == 1)
            self.dimension_ = shape[1] if self.transpose_ else shape[0]

        logging.info('Constructing nearest neighbor data structure.')
        train_start = time.clock()
        self._create_engine(k)
        train_end = time.clock()
#        logging.info('Took %f sec' %(train_end - train_start))

    def within_distance(x, dist=0.5, return_indices=False):
        raise NotImplementedError

    def nearest_neighbors(self, x, k, return_indices=False):
        # HACK: load all data back into new engine if k doesn't match
        if k != self.k_:
            self._create_engine(k)

        feature = self.phi_(x)
        if self.transpose_:
            query_result = self.engine_.neighbours(feature.T)
        else:
            query_result = self.engine_.neighbours(feature)

        if len(query_result) == 0:
            return [], []

        features, indices, distances = zip(*query_result)
        if return_indices:
            return list(indices), list(distances)
        else:
            indices = np.array(indices)
            return list(self.data_[indices]), list(distances)
開發者ID:brianhou,項目名稱:GPIS,代碼行數:61,代碼來源:kernels.py

示例3: TestPermutation

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class TestPermutation(unittest.TestCase):

    def setUp(self):
        logging.basicConfig(level=logging.WARNING)

        # Create permutations meta-hash
        self.permutations = HashPermutations('permut')

        # Create binary hash as child hash
        rbp = RandomBinaryProjections('rbp1', 4)
        rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

        # Add rbp as child hash of permutations hash
        self.permutations.add_child_hash(rbp, rbp_conf)

        # Create engine with meta hash and cosine distance
        self.engine_perm = Engine(200, lshashes=[self.permutations], distance=CosineDistance())

        # Create engine without permutation meta-hash
        self.engine = Engine(200, lshashes=[rbp], distance=CosineDistance())

    def test_runnable(self):

        # First index some random vectors
        matrix = numpy.zeros((1000,200))
        for i in xrange(1000):
            v = numpy.random.randn(200)
            matrix[i] = v
            self.engine.store_vector(v)
            self.engine_perm.store_vector(v)

        # Then update permuted index
        self.permutations.build_permuted_index()

        # Do random query on engine with permutations meta-hash
        print '\nNeighbour distances with permuted index:'
        query = numpy.random.randn(200)
        results = self.engine_perm.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Do random query on engine without permutations meta-hash
        print '\nNeighbour distances without permuted index (distances should be larger):'
        results = self.engine.neighbours(query)
        dists = [x[2] for x in results]
        print dists

        # Real neighbours
        print '\nReal neighbour distances:'
        query = query.reshape((1,200))
        dists = CosineDistance().distance_matrix(matrix,query)
        dists = dists.reshape((-1,))
        dists = sorted(dists)
        print dists[:10]
開發者ID:BeifeiZhou,項目名稱:NearPy,代碼行數:56,代碼來源:permutation_tests.py

示例4: StateDBEngine

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class StateDBEngine(object):
    def __init__(self):
        # initialize "nearby" library
        self.dim = 4
        self.rbp = RandomBinaryProjections('rbp', 100)
        self.engine = Engine(self.dim, lshashes=[self.rbp])
        # performance counter
        self.counter = 0

    def add(self, x, data):
        # print 'add data = ', data
        self.engine.store_vector(x, data)
        self.counter += 1

    def lookup(self, x, THRESHOLD=0.1):
        naver = self.engine.neighbours(x)
        if len(naver) == 0:
            return None

        pt, data, d = naver[0]
        # print 'lhs, rhs', x, pt,
        # print 'd = ', d, (d < THRESHOLD), (data is None)
        if d < THRESHOLD:
            return data
        else:
            return None
開發者ID:sehoonha,項目名稱:pydart_private,代碼行數:28,代碼來源:state_db.py

示例5: knn

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
def knn(data,k):
    assert k<=len(data)-1, 'The number of neighbors must be smaller than the data cardinality (minus one)'
    k=k+1
    n,dimension = data.shape
    ind = []
    dist = []
    

    if(dimension<10):
        rbp = RandomBinaryProjections('rbp', dimension)
    else:
        rbp = RandomBinaryProjections('rbp',10)
        
    engine = Engine(dimension, lshashes=[rbp], vector_filters=[NearestFilter(k)])

    for i in range(n):
        engine.store_vector(data[i], i)
    
    
    for i in range(n):
     
        N = engine.neighbours(data[i])
        ind.append([x[1] for x in N][1:])
        dist.append([x[2] for x in N][1:])
        
  
    return N,dist,ind
開發者ID:wavelets,項目名稱:autoencoder_tf,代碼行數:29,代碼來源:knn.py

示例6: main

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
def main(args):
    """ Main entry.
    """

    data = Dataset(args.dataset)
    num, dim = data.base.shape

    # We are looking for the ten closest neighbours
    nearest = NearestFilter(args.topk)
    # We want unique candidates
    unique = UniqueFilter()

    # Create engines for all configurations
    for nbit, ntbl in itertools.product(args.nbits, args.ntbls):
        logging.info("Creating Engine ...")
        lshashes = [RandomBinaryProjections('rbp%d' % i, nbit)
                    for i in xrange(ntbl)]

        # Create engine with this configuration
        engine = Engine(dim, lshashes=lshashes,
                        vector_filters=[unique, nearest])
        logging.info("\tDone!")

        logging.info("Adding items ...")
        for i in xrange(num):
            engine.store_vector(data.base[i, :], i)
            if i % 100000 == 0:
                logging.info("\t%d/%d" % (i, data.nbae))
        logging.info("\tDone!")

        ids = np.zeros((data.nqry, args.topk), np.int)
        logging.info("Searching ...")
        tic()
        for i in xrange(data.nqry):
            reti = [y for x, y, z in
                    np.array(engine.neighbours(data.query[i]))]
            ids[i, :len(reti)] = reti
            if i % 100 == 0:
                logging.info("\t%d/%d" % (i, data.nqry))
        time_costs = toc()
        logging.info("\tDone!")

        report = os.path.join(args.exp_dir, "report.txt")
        with open(report, "a") as rptf:
            rptf.write("*" * 64 + "\n")
            rptf.write("* %s\n" % time.asctime())
            rptf.write("*" * 64 + "\n")

        r_at_k = compute_stats(data.groundtruth, ids, args.topk)[-1][-1]

        with open(report, "a") as rptf:
            rptf.write("=" * 64 + "\n")
            rptf.write("index_%s-nbit_%d-ntbl_%d\n" % ("NearPy", nbit, ntbl))
            rptf.write("-" * 64 + "\n")
            rptf.write("[email protected]%-8d%.4f\n" % (args.topk, r_at_k))
            rptf.write("time cost (ms): %.3f\n" %
                       (time_costs * 1000 / data.nqry))
開發者ID:RowenaWong,項目名稱:hdidx,代碼行數:59,代碼來源:eval_nearpy.py

示例7: TestEngine

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class TestEngine(unittest.TestCase):

    def setUp(self):
        self.engine = Engine(1000)

    def test_storage_issue(self):
        engine1 = Engine(100)
        engine2 = Engine(100)

        for k in range(1000):
            x = numpy.random.randn(100)
            x_data = 'data'
            engine1.store_vector(x, x_data)

        # Each engine should have its own default storage
        self.assertTrue(len(engine2.storage.buckets)==0)

    def test_retrieval(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = numpy.random.randn(1000)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y = n[0][0]
            y_data = n[0][1]
            y_distance = n[0][2]
            self.assertTrue((y == x).all())
            self.assertEqual(y_data, x_data)
            self.assertEqual(y_distance, 0.0)

    def test_retrieval_sparse(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = scipy.sparse.rand(1000, 1, density=0.05)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y = n[0][0]
            y_data = n[0][1]
            y_distance = n[0][2]
            self.assertTrue((y - x).sum() == 0.0)
            self.assertEqual(y_data, x_data)
            self.assertEqual(y_distance, 0.0)
開發者ID:BeifeiZhou,項目名稱:NearPy,代碼行數:46,代碼來源:engine_tests.py

示例8: TestEngine

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class TestEngine(unittest.TestCase):

    def setUp(self):
        self.engine = Engine(1000)

    def test_storage_issue(self):
        engine1 = Engine(100)
        engine2 = Engine(100)

        for k in range(1000):
            x = numpy.random.randn(100)
            x_data = 'data'
            engine1.store_vector(x, x_data)

        # Each engine should have its own default storage
        self.assertTrue(len(engine2.storage.buckets)==0)

    def test_retrieval(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = numpy.random.randn(1000)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y, y_data, y_distance  = n[0]
            normalized_x = unitvec(x)
            delta = 0.000000001
            self.assertAlmostEqual(numpy.abs((normalized_x - y)).max(), 0, delta=delta)
            self.assertEqual(y_data, x_data)
            self.assertAlmostEqual(y_distance, 0.0, delta=delta)

    def test_retrieval_sparse(self):
        for k in range(100):
            self.engine.clean_all_buckets()
            x = scipy.sparse.rand(1000, 1, density=0.05)
            x_data = 'data'
            self.engine.store_vector(x, x_data)
            n = self.engine.neighbours(x)
            y, y_data, y_distance = n[0]
            normalized_x = unitvec(x)
            delta = 0.000000001
            self.assertAlmostEqual(numpy.abs((normalized_x - y)).max(), 0, delta=delta)
            self.assertEqual(y_data, x_data)
            self.assertAlmostEqual(y_distance, 0.0, delta=delta)
開發者ID:MaxwellRebo,項目名稱:NearPy,代碼行數:46,代碼來源:engine_tests.py

示例9: test_sparse

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
def test_sparse():
    dim = 500
    num_train = 1000
    num_test = 1
    train_data = ss.rand(dim, num_train)#pickle.load('/home/jmahler/Downloads/feature_objects.p')
    test_data = ss.rand(dim, num_test)

    rbp = RandomBinaryProjections('rbp', 10)
    engine = Engine(dim, lshashes=[rbp])

    for i in range(num_train):
        engine.store_vector(train_data.getcol(i))

    for j in range(num_test):
        N = engine.neighbours(test_data.getcol(j))
        print N

    IPython.embed()
開發者ID:brianhou,項目名稱:GPIS,代碼行數:20,代碼來源:kernels.py

示例10: __init__

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class lshsearcher:
    def __init__(self):
        self.__dimension = None
        self.__engine_perm = None
        self.__permutations = None

    def _set_confval(self, dimension=None):
        if dimension is None:
            return None
        else:
            self.__dimension = dimension

    def _engine_on(self):
        # Create permutations meta-hash
        self.__permutations = HashPermutations('permut')

        # Create binary hash as child hash
        rbp_perm = RandomBinaryProjections('rbp_perm', 14)
        rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

        # Add rbp as child hash of permutations hash
        self.__permutations.add_child_hash(rbp_perm, rbp_conf)

        # Create engine
        self.__engine_perm = Engine(self.__dimension, lshashes=[self.__permutations], distance=CosineDistance())

    def conf(self, dimension):
        self._set_confval(dimension)
        self._engine_on()

    def getData(self, v):
        if self.__engine_perm is not None:
            self.__engine_perm.store_vector(v)

    def commitData(self):
        if self.__permutations is not None:
            self.__permutations.build_permuted_index()

    def find(self, v):
        if self.__engine_perm is not None:
            return self.__engine_perm.neighbours(v)
開發者ID:GabrielKim,項目名稱:ImageSearcher,代碼行數:43,代碼來源:lshsearcher.py

示例11: __init__

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class LSHSearch:
    def __init__(self, feature_file, dimension, neighbour, lsh_project_num):
        self.feature_file = feature_file
        self.dimension = dimension
        self.neighbour = neighbour
        self.face_feature = defaultdict(str)
        self.ground_truth = defaultdict(int)

        # Create permutations meta-hash
        permutations2 = HashPermutationMapper('permut2')

        tmp_feature = defaultdict(str)
        with open(feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                tmp_feature[name] = feature

        matrix = []
        label = []
        for item in tmp_feature.keys():
            v = map(float, tmp_feature[item].split(','))
            matrix.append(np.array(v))
            label.append(item)
        random.shuffle(matrix)
        print 'PCA matric : ', len(matrix)

        rbp_perm2 = PCABinaryProjections('testPCABPHash', lsh_project_num, matrix)
        permutations2.add_child_hash(rbp_perm2)

        # Create engine
        nearest = NearestFilter(self.neighbour)
        self.engine = Engine(self.dimension, lshashes=[permutations2], distance=CosineDistance(), vector_filters=[nearest])

    def build(self):
        with open(self.feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                self.face_feature[name] = feature
                person = '_'.join(name.split('_')[:-1])
                self.ground_truth[person] += 1 

        for item in self.face_feature.keys():
            v = map(float, self.face_feature[item].split(','))
            self.engine.store_vector(v, item)
 
    def query(self, person_list):
        dists = []
        scores = []
        for person in person_list:
            query = map(float, self.face_feature[person].split(','))
            print '\nNeighbour distances with mutliple binary hashes:'
            print '  -> Candidate count is %d' % self.engine.candidate_count(query)
            results = self.engine.neighbours(query)
            dists = dists + [x[1] for x in results]
            scores = scores + [x[2] for x in results]
        t_num = [self.ground_truth['_'.join(x.split('_')[:-1])] for x in dists]
        res = zip(dists, scores, t_num)
        res.sort(key = lambda t: t[1])
        res1 = self.f7(res, person_list)
        return res1[:self.neighbour]

    def true_num(self, person):
        return self.ground_truth[person]

    def f7(self, zip_seq, person_list):
        seen = set()
        seen_add = seen.add
        return [ x for x in zip_seq if not (x[0] in seen or seen_add(x[0]) or x[0] in person_list)]
開發者ID:foremap,項目名稱:face-search-demo,代碼行數:70,代碼來源:lsh_index.py

示例12: TestRandomBinaryProjectionTree

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class TestRandomBinaryProjectionTree(unittest.TestCase):

    def setUp(self):
        self.memory = MemoryStorage()
        self.redis_object = Redis(host='localhost',
                                  port=6379, db=0)
        self.redis_storage = RedisStorage(self.redis_object)

    def test_retrieval(self):
        # We want 12 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 12, 20)

        # Create engine for 100 dimensional feature space, do not forget to set
        # nearest filter to 20, because default is 10
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 200000 random vectors
        #print 'Indexing...'
        for k in range(200000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)

        # Now do random queries and check result set size
        #print 'Querying...'
        for k in range(10):
            x = numpy.random.randn(100)
            n = self.engine.neighbours(x)
            #print "Candidate count = %d" % self.engine.candidate_count(x)
            #print "Result size = %d" % len(n)
            self.assertEqual(len(n), 20)

    def test_storage_memory(self):
        # We want 10 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 10, 20)

        # Create engine for 100 dimensional feature space
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 2000 random vectors
        for k in range(2000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)

        self.memory.store_hash_configuration(rbpt)

        rbpt2 = RandomBinaryProjectionTree(None, None, None)
        rbpt2.apply_config(self.memory.load_hash_configuration('testHash'))

        self.assertEqual(rbpt.dim, rbpt2.dim)
        self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
        self.assertEqual(rbpt.projection_count, rbpt2.projection_count)

        for i in range(rbpt.normals.shape[0]):
            for j in range(rbpt.normals.shape[1]):
                self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])

        # Now do random queries and check result set size
        for k in range(10):
            x = numpy.random.randn(100)
            keys1 = rbpt.hash_vector(x, querying=True)
            keys2 = rbpt2.hash_vector(x, querying=True)
            self.assertEqual(len(keys1), len(keys2))
            for k in range(len(keys1)):
                self.assertEqual(keys1[k], keys2[k])

    def test_storage_redis(self):
        # We want 10 projections, 20 results at least
        rbpt = RandomBinaryProjectionTree('testHash', 10, 20)

        # Create engine for 100 dimensional feature space
        self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])

        # First insert 2000 random vectors
        for k in range(2000):
            x = numpy.random.randn(100)
            x_data = 'data'
            self.engine.store_vector(x, x_data)


        self.redis_storage.store_hash_configuration(rbpt)

        rbpt2 = RandomBinaryProjectionTree(None, None, None)
        rbpt2.apply_config(self.redis_storage.load_hash_configuration('testHash'))

        self.assertEqual(rbpt.dim, rbpt2.dim)
        self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
        self.assertEqual(rbpt.projection_count, rbpt2.projection_count)

        for i in range(rbpt.normals.shape[0]):
            for j in range(rbpt.normals.shape[1]):
                self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])

        # Now do random queries and check result set size
        for k in range(10):
            x = numpy.random.randn(100)
            keys1 = rbpt.hash_vector(x, querying=True)
            keys2 = rbpt2.hash_vector(x, querying=True)
            self.assertEqual(len(keys1), len(keys2))
#.........這裏部分代碼省略.........
開發者ID:BeifeiZhou,項目名稱:NearPy,代碼行數:103,代碼來源:projection_trees_tests.py

示例13: __init__

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]

#.........這裏部分代碼省略.........
		self.engine_ = Engine(self.KPCA_.alphas_.shape[1], lshashes=[rbp])
                transformed_vectors = self.KPCA_.transform(vector_set.T)
		for i in range(len(list(self.training_))):
			#vector=vector_set[:,i]
			#vector=np.reshape(vector,(self.biggest,1))
			#vector=self.KPCA_.transform(vector)
			self.engine_.store_vector(transformed_vectors[i,:], self.training_[i])

	def load_FICA(self,vector_set):
		rbp = RandomBinaryProjections('rbp',10)
		self.engine_ = Engine(self.biggest, lshashes=[rbp])
		for i in range(len(list(self.training_))):
			vector=vector_set[:,i]
			vector=np.reshape(vector,(self.biggest,1))
			vector=self.FICA_.transform(vector)
			self.engine_.store_vector(vector[:,0],self.training_[i])

	def load_DL(self,vector_set):
		rbp = RandomBinaryProjections('rbp',10)
		self.engine_ = Engine(self.biggest, lshashes=[rbp])
		for i in range(len(list(self.training_))):
			vector=vector_set[:,i]
			vector=np.reshape(vector,(self.biggest,1))
			vector=self.DL_[-1].transform(vector)
			self.engine_.store_vector(vector[:,0],self.training_[i])		

	def engine_query(self,test_vector):
		"""
		queries the engine with a (self.biggest,1) dimension vector and returns the file_names of nearest
		neighbors and the results
		"""
		#print test_vector
		#reshaped=np.reshape(test_vector,(self.biggest,1))
		results = self.engine_.neighbours(test_vector.T)
		file_names = [i[1] for i in results]
		return file_names, results

	def setup_confusion(self):
		"""
		reinitializes the self.confusion_ confusion matrix variable
		"""
		self.confusion_={}
		self.confusion_[UNKNOWN_TAG] = {}
		for file_ in self.all_files_:
			category = cat50_file_category(file_)
			self.confusion_[category] = {}
		for query_cat in self.confusion_.keys():
			for pred_cat in self.confusion_.keys():
				self.confusion_[query_cat][pred_cat] = 0

	"""
	Makes a test vector by taking in an SDF, reshaping it, normalizing it, then returns a transformed
	version of that vector based on the corresponding decomposition model that was already trained
	"""

	def make_test_vector(self,sdf_array,vector_type):
		if vector_type=="PCA":
 			return self.make_PCA_test_vector(sdf_array)
		elif vector_type=="FA":
			return self.make_FA_test_vector(sdf_array)
		elif vector_type=="KPCA":
			return self.make_KPCA_test_vector(sdf_array)
		elif vector_type=="FICA":
			return self.make_FICA_test_vector(sdf_array)
		elif vector_type=="DL":
			return self.make_DL_test_vector(sdf_array)
開發者ID:brianhou,項目名稱:GPIS,代碼行數:70,代碼來源:testing_class.py

示例14: example1

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
def example1():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 10000

    print 'Creating engines'

    # We want 12 projections, 20 results at least
    rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)

    # Create engine 1
    engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())

    # Create binary hash as child hash
    rbp = RandomBinaryProjections('rbp1', 20)

    # Create engine 2
    engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 20)
    rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine 3
    engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine 3
    engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())

    print 'Indexing %d random vectors of dimension %d' % (POINTS, DIM)

    # First index some random vectors
    matrix = numpy.zeros((POINTS,DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine.store_vector(v)
        engine_rbpt.store_vector(v)
        engine_perm.store_vector(v)
        engine_perm2.store_vector(v)

    print 'Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys())
    print 'Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys())

    print 'Building permuted index for HashPermutations'

    # Then update permuted index
    permutations.build_permuted_index()

    print 'Generate random data'

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 1
    print '\nNeighbour distances with RandomBinaryProjectionTree:'
    print '  -> Candidate count is %d' % engine_rbpt.candidate_count(query)
    results = engine_rbpt.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 2
    print '\nNeighbour distances with RandomBinaryProjections:'
    print '  -> Candidate count is %d' % engine.candidate_count(query)
    results = engine.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 3
    print '\nNeighbour distances with HashPermutations:'
    print '  -> Candidate count is %d' % engine_perm.candidate_count(query)
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print dists

    # Do random query on engine 4
    print '\nNeighbour distances with HashPermutations2:'
    print '  -> Candidate count is %d' % engine_perm2.candidate_count(query)
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print dists

#.........這裏部分代碼省略.........
開發者ID:BeifeiZhou,項目名稱:NearPy,代碼行數:103,代碼來源:example1.py

示例15: __init__

# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import neighbours [as 別名]
class LSHSearch:
    def __init__(self, feature_file, dimension, neighbour, lsh_project_num):
        self.feature_file = feature_file
        self.dimension = dimension
        self.neighbour = neighbour
        self.face_feature = defaultdict(str)
        self.ground_truth = defaultdict(int)

        # Create permutations meta-hash
        self.permutations2 = HashPermutationMapper('permut2')

        tmp_feature = defaultdict(str)
        with open(feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                tmp_feature[name] = feature

        matrix = []
        label = []
        for item in tmp_feature.keys():
            v = map(float, tmp_feature[item].split(','))
            matrix.append(np.array(v))
            label.append(item)
        random.shuffle(matrix)
        print 'PCA matric : ', len(matrix)

        rbp_perm2 = PCABinaryProjections(
            'testPCABPHash', lsh_project_num, matrix)
        self.permutations2.add_child_hash(rbp_perm2)

        # Create engine
        nearest = NearestFilter(self.neighbour)
        self.engine = Engine(
            self.dimension,
            lshashes=[self.permutations2],
            distance=CosineDistance(),
            vector_filters=[nearest])

    def build(self):
        with open(self.feature_file, 'rb') as f:
            reader = csv.reader(f, delimiter=' ')
            for name, feature in reader:
                self.face_feature[name] = feature
                person = '_'.join(name.split('_')[:-1])
                self.ground_truth[person] += 1

        for item in self.face_feature.keys():
            v = map(float, self.face_feature[item].split(','))
            self.engine.store_vector(v, item)

    def update(self, person, feature):
        print feature
        v = map(float, feature.split(','))
        epoch_time = long(time.time())
        f_name = person + '_' + str(epoch_time)
        print f_name
        self.engine.store_vector(v, f_name)

    def query(self, person_feature):
        dists = []
        scores = []

        query = map(float, person_feature.split(','))
        # print '\nNeighbour distances with mutliple binary hashes:'
        # print '  -> Candidate count is %d' % self.engine.candidate_count(query)
        results = self.engine.neighbours(query)
        dists = dists + [x[1] for x in results]
        scores = scores + [x[2] for x in results]

        res = zip(dists, scores)
        res.sort(key=lambda t: t[1])
        return res[:self.neighbour]
開發者ID:foremap,項目名稱:dl-face-demo,代碼行數:74,代碼來源:lsh_index.py


注:本文中的nearpy.Engine.neighbours方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。