本文整理匯總了Python中nearpy.Engine.candidate_count方法的典型用法代碼示例。如果您正苦於以下問題:Python Engine.candidate_count方法的具體用法?Python Engine.candidate_count怎麽用?Python Engine.candidate_count使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nearpy.Engine
的用法示例。
在下文中一共展示了Engine.candidate_count方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: example2
# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import candidate_count [as 別名]
def example2():
# Dimension of feature space
DIM = 100
# Number of data points (dont do too much because of exact search)
POINTS = 20000
##########################################################
print 'Performing indexing with HashPermutations...'
t0 = time.time()
# Create permutations meta-hash
permutations = HashPermutations('permut')
# Create binary hash as child hash
rbp_perm = RandomBinaryProjections('rbp_perm', 14)
rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}
# Add rbp as child hash of permutations hash
permutations.add_child_hash(rbp_perm, rbp_conf)
# Create engine
engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())
# First index some random vectors
matrix = numpy.zeros((POINTS,DIM))
for i in xrange(POINTS):
v = numpy.random.randn(DIM)
matrix[i] = v
engine_perm.store_vector(v)
# Then update permuted index
permutations.build_permuted_index()
t1 = time.time()
print 'Indexing took %f seconds' % (t1-t0)
# Get random query vector
query = numpy.random.randn(DIM)
# Do random query on engine 3
print '\nNeighbour distances with HashPermutations:'
print ' -> Candidate count is %d' % engine_perm.candidate_count(query)
results = engine_perm.neighbours(query)
dists = [x[2] for x in results]
print dists
# Real neighbours
print '\nReal neighbour distances:'
query = query.reshape((1,DIM))
dists = CosineDistance().distance_matrix(matrix,query)
dists = dists.reshape((-1,))
dists = sorted(dists)
print dists[:10]
##########################################################
print '\nPerforming indexing with HashPermutationMapper...'
t0 = time.time()
# Create permutations meta-hash
permutations2 = HashPermutationMapper('permut2')
# Create binary hash as child hash
rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14)
# Add rbp as child hash of permutations hash
permutations2.add_child_hash(rbp_perm2)
# Create engine
engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())
# First index some random vectors
matrix = numpy.zeros((POINTS,DIM))
for i in xrange(POINTS):
v = numpy.random.randn(DIM)
matrix[i] = v
engine_perm2.store_vector(v)
t1 = time.time()
print 'Indexing took %f seconds' % (t1-t0)
# Get random query vector
query = numpy.random.randn(DIM)
# Do random query on engine 4
print '\nNeighbour distances with HashPermutationMapper:'
print ' -> Candidate count is %d' % engine_perm2.candidate_count(query)
results = engine_perm2.neighbours(query)
dists = [x[2] for x in results]
print dists
# Real neighbours
print '\nReal neighbour distances:'
query = query.reshape((1,DIM))
dists = CosineDistance().distance_matrix(matrix,query)
dists = dists.reshape((-1,))
dists = sorted(dists)
#.........這裏部分代碼省略.........
示例2: example1
# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import candidate_count [as 別名]
def example1():
# Dimension of feature space
DIM = 100
# Number of data points (dont do too much because of exact search)
POINTS = 10000
print 'Creating engines'
# We want 12 projections, 20 results at least
rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)
# Create engine 1
engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())
# Create binary hash as child hash
rbp = RandomBinaryProjections('rbp1', 20)
# Create engine 2
engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())
# Create permutations meta-hash
permutations = HashPermutations('permut')
# Create binary hash as child hash
rbp_perm = RandomBinaryProjections('rbp_perm', 20)
rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100}
# Add rbp as child hash of permutations hash
permutations.add_child_hash(rbp_perm, rbp_conf)
# Create engine 3
engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance())
# Create permutations meta-hash
permutations2 = HashPermutationMapper('permut2')
# Create binary hash as child hash
rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)
# Add rbp as child hash of permutations hash
permutations2.add_child_hash(rbp_perm2)
# Create engine 3
engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance())
print 'Indexing %d random vectors of dimension %d' % (POINTS, DIM)
# First index some random vectors
matrix = numpy.zeros((POINTS,DIM))
for i in xrange(POINTS):
v = numpy.random.randn(DIM)
matrix[i] = v
engine.store_vector(v)
engine_rbpt.store_vector(v)
engine_perm.store_vector(v)
engine_perm2.store_vector(v)
print 'Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys())
print 'Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys())
print 'Building permuted index for HashPermutations'
# Then update permuted index
permutations.build_permuted_index()
print 'Generate random data'
# Get random query vector
query = numpy.random.randn(DIM)
# Do random query on engine 1
print '\nNeighbour distances with RandomBinaryProjectionTree:'
print ' -> Candidate count is %d' % engine_rbpt.candidate_count(query)
results = engine_rbpt.neighbours(query)
dists = [x[2] for x in results]
print dists
# Do random query on engine 2
print '\nNeighbour distances with RandomBinaryProjections:'
print ' -> Candidate count is %d' % engine.candidate_count(query)
results = engine.neighbours(query)
dists = [x[2] for x in results]
print dists
# Do random query on engine 3
print '\nNeighbour distances with HashPermutations:'
print ' -> Candidate count is %d' % engine_perm.candidate_count(query)
results = engine_perm.neighbours(query)
dists = [x[2] for x in results]
print dists
# Do random query on engine 4
print '\nNeighbour distances with HashPermutations2:'
print ' -> Candidate count is %d' % engine_perm2.candidate_count(query)
results = engine_perm2.neighbours(query)
dists = [x[2] for x in results]
print dists
#.........這裏部分代碼省略.........
示例3: __init__
# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import candidate_count [as 別名]
class LSHSearch:
def __init__(self, feature_file, dimension, neighbour, lsh_project_num):
self.feature_file = feature_file
self.dimension = dimension
self.neighbour = neighbour
self.face_feature = defaultdict(str)
self.ground_truth = defaultdict(int)
# Create permutations meta-hash
permutations2 = HashPermutationMapper('permut2')
tmp_feature = defaultdict(str)
with open(feature_file, 'rb') as f:
reader = csv.reader(f, delimiter=' ')
for name, feature in reader:
tmp_feature[name] = feature
matrix = []
label = []
for item in tmp_feature.keys():
v = map(float, tmp_feature[item].split(','))
matrix.append(np.array(v))
label.append(item)
random.shuffle(matrix)
print 'PCA matric : ', len(matrix)
rbp_perm2 = PCABinaryProjections('testPCABPHash', lsh_project_num, matrix)
permutations2.add_child_hash(rbp_perm2)
# Create engine
nearest = NearestFilter(self.neighbour)
self.engine = Engine(self.dimension, lshashes=[permutations2], distance=CosineDistance(), vector_filters=[nearest])
def build(self):
with open(self.feature_file, 'rb') as f:
reader = csv.reader(f, delimiter=' ')
for name, feature in reader:
self.face_feature[name] = feature
person = '_'.join(name.split('_')[:-1])
self.ground_truth[person] += 1
for item in self.face_feature.keys():
v = map(float, self.face_feature[item].split(','))
self.engine.store_vector(v, item)
def query(self, person_list):
dists = []
scores = []
for person in person_list:
query = map(float, self.face_feature[person].split(','))
print '\nNeighbour distances with mutliple binary hashes:'
print ' -> Candidate count is %d' % self.engine.candidate_count(query)
results = self.engine.neighbours(query)
dists = dists + [x[1] for x in results]
scores = scores + [x[2] for x in results]
t_num = [self.ground_truth['_'.join(x.split('_')[:-1])] for x in dists]
res = zip(dists, scores, t_num)
res.sort(key = lambda t: t[1])
res1 = self.f7(res, person_list)
return res1[:self.neighbour]
def true_num(self, person):
return self.ground_truth[person]
def f7(self, zip_seq, person_list):
seen = set()
seen_add = seen.add
return [ x for x in zip_seq if not (x[0] in seen or seen_add(x[0]) or x[0] in person_list)]
示例4: TestRandomBinaryProjectionTree
# 需要導入模塊: from nearpy import Engine [as 別名]
# 或者: from nearpy.Engine import candidate_count [as 別名]
class TestRandomBinaryProjectionTree(unittest.TestCase):
def setUp(self):
self.memory = MemoryStorage()
self.redis_object = Redis(host='localhost',
port=6379, db=0)
self.redis_storage = RedisStorage(self.redis_object)
def test_retrieval(self):
# We want 12 projections, 20 results at least
rbpt = RandomBinaryProjectionTree('testHash', 12, 20)
# Create engine for 100 dimensional feature space, do not forget to set
# nearest filter to 20, because default is 10
self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])
# First insert 200000 random vectors
print 'Indexing...'
for k in range(200000):
x = numpy.random.randn(100)
x_data = 'data'
self.engine.store_vector(x, x_data)
# Now do random queries and check result set size
print 'Querying...'
for k in range(10):
x = numpy.random.randn(100)
n = self.engine.neighbours(x)
print "Candidate count = %d" % self.engine.candidate_count(x)
print "Result size = %d" % len(n)
self.assertEqual(len(n), 20)
def test_storage_memory(self):
# We want 10 projections, 20 results at least
rbpt = RandomBinaryProjectionTree('testHash', 10, 20)
# Create engine for 100 dimensional feature space
self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])
# First insert 2000 random vectors
for k in range(2000):
x = numpy.random.randn(100)
x_data = 'data'
self.engine.store_vector(x, x_data)
self.memory.store_hash_configuration(rbpt)
rbpt2 = RandomBinaryProjectionTree(None, None, None)
rbpt2.apply_config(self.memory.load_hash_configuration('testHash'))
self.assertEqual(rbpt.dim, rbpt2.dim)
self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
self.assertEqual(rbpt.projection_count, rbpt2.projection_count)
for i in range(rbpt.normals.shape[0]):
for j in range(rbpt.normals.shape[1]):
self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])
# Now do random queries and check result set size
for k in range(10):
x = numpy.random.randn(100)
keys1 = rbpt.hash_vector(x, querying=True)
keys2 = rbpt2.hash_vector(x, querying=True)
self.assertEqual(len(keys1), len(keys2))
for k in range(len(keys1)):
self.assertEqual(keys1[k], keys2[k])
def test_storage_redis(self):
# We want 10 projections, 20 results at least
rbpt = RandomBinaryProjectionTree('testHash', 10, 20)
# Create engine for 100 dimensional feature space
self.engine = Engine(100, lshashes=[rbpt], vector_filters=[NearestFilter(20)])
# First insert 2000 random vectors
for k in range(2000):
x = numpy.random.randn(100)
x_data = 'data'
self.engine.store_vector(x, x_data)
self.redis_storage.store_hash_configuration(rbpt)
rbpt2 = RandomBinaryProjectionTree(None, None, None)
rbpt2.apply_config(self.redis_storage.load_hash_configuration('testHash'))
self.assertEqual(rbpt.dim, rbpt2.dim)
self.assertEqual(rbpt.hash_name, rbpt2.hash_name)
self.assertEqual(rbpt.projection_count, rbpt2.projection_count)
for i in range(rbpt.normals.shape[0]):
for j in range(rbpt.normals.shape[1]):
self.assertEqual(rbpt.normals[i, j], rbpt2.normals[i, j])
# Now do random queries and check result set size
for k in range(10):
x = numpy.random.randn(100)
keys1 = rbpt.hash_vector(x, querying=True)
keys2 = rbpt2.hash_vector(x, querying=True)
self.assertEqual(len(keys1), len(keys2))
#.........這裏部分代碼省略.........