本文整理匯總了Python中mvpa2.misc.attrmap.AttributeMap.to_numeric方法的典型用法代碼示例。如果您正苦於以下問題:Python AttributeMap.to_numeric方法的具體用法?Python AttributeMap.to_numeric怎麽用?Python AttributeMap.to_numeric使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mvpa2.misc.attrmap.AttributeMap
的用法示例。
在下文中一共展示了AttributeMap.to_numeric方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_attrmap_conflicts
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
def test_attrmap_conflicts():
am_n = AttributeMap({'a':1, 'b':2, 'c':1})
am_t = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='tuple')
am_l = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='lucky')
q_f = ['a', 'b', 'a', 'c']
# should have no effect on forward mapping
ok_(np.all(am_n.to_numeric(q_f) == am_t.to_numeric(q_f)))
ok_(np.all(am_t.to_numeric(q_f) == am_l.to_numeric(q_f)))
assert_raises(ValueError, am_n.to_literal, [2])
r_t = am_t.to_literal([2, 1])
r_l = am_l.to_literal([2, 1])
示例2: _test_gpr_model_selection
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
def _test_gpr_model_selection(self): # pragma: no cover
"""Smoke test for running model selection while getting GPRWeights
TODO: DISABLED because setting of hyperparameters was not adopted for 0.6 (yet)
"""
if not externals.exists('openopt'):
return
amap = AttributeMap() # we would need to pass numbers into the GPR
dataset = datasets['uni2small'].copy() #data_generators.linear1d_gaussian_noise()
dataset.targets = amap.to_numeric(dataset.targets).astype(float)
k = GeneralizedLinearKernel()
clf = GPR(k, enable_ca=['log_marginal_likelihood'])
sa = clf.get_sensitivity_analyzer() # should be regular weights
sa_ms = clf.get_sensitivity_analyzer(flavor='model_select') # with model selection
def prints():
print clf.ca.log_marginal_likelihood, clf.kernel.Sigma_p, clf.kernel.sigma_0
sa(dataset)
lml = clf.ca.log_marginal_likelihood
sa_ms(dataset)
lml_ms = clf.ca.log_marginal_likelihood
self.assertTrue(lml_ms > lml)
示例3: SVM
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
#.........這裏部分代碼省略.........
# LABELS
ul = None
self.__traindataset = dataset
# OK -- we have to map labels since
# binary ones expect -1/+1
# Multiclass expect labels starting with 0, otherwise they puke
# when ran from ipython... yikes
if __debug__:
debug("SG_", "Creating labels instance")
if self.__is_regression__:
labels_ = np.asarray(targets_sa.value, dtype='double')
else:
ul = targets_sa.unique
# ul.sort()
if len(ul) == 2:
# assure that we have -1/+1
_labels_dict = {ul[0]:-1.0, ul[1]:+1.0}
elif len(ul) < 2:
raise FailedToTrainError, \
"We do not have 1-class SVM brought into SG yet"
else:
# can't use plain enumerate since we need them swapped
_labels_dict = dict([ (ul[i], i) for i in range(len(ul))])
# Create SG-customized attrmap to assure -1 / +1 if necessary
self._attrmap = AttributeMap(_labels_dict, mapnumeric=True)
if __debug__:
debug("SG__", "Mapping labels using dict %s" % _labels_dict)
labels_ = self._attrmap.to_numeric(targets_sa.value).astype(float)
labels = shogun.Features.Labels(labels_)
_setdebug(labels, 'Labels')
# KERNEL
# XXX cruel fix for now... whole retraining business needs to
# be rethought
if retrainable:
_changedData['kernel_params'] = _changedData.get('kernel_params', False)
# TODO: big RF to move non-kernel classifiers away
if 'kernel-based' in self.__tags__ and (not retrainable
or _changedData['traindata'] or _changedData['kernel_params']):
# If needed compute or just collect arguments for SVM and for
# the kernel
if retrainable and __debug__:
if _changedData['traindata']:
debug("SG",
"Re-Creating kernel since training data has changed")
if _changedData['kernel_params']:
debug("SG",
"Re-Creating kernel since params %s has changed" %
_changedData['kernel_params'])
k = self.params.kernel
k.compute(dataset)
self.__kernel = kernel = k.as_raw_sg()
示例4: plot_decision_boundary_2d
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
def plot_decision_boundary_2d(dataset, clf=None,
targets=None, regions=None, maps=None,
maps_res=50, vals=None,
data_callback=None):
"""Plot a scatter of a classifier's decision boundary and data points
Assumes data is 2d (no way to visualize otherwise!!)
Parameters
----------
dataset : `Dataset`
Data points to visualize (might be the data `clf` was train on, or
any novel data).
clf : `Classifier`, optional
Trained classifier
targets : string, optional
What samples attributes to use for targets. If None and clf is
provided, then `clf.params.targets_attr` is used.
regions : string, optional
Plot regions (polygons) around groups of samples with the same
attribute (and target attribute) values. E.g. chunks.
maps : string in {'targets', 'estimates'}, optional
Either plot underlying colored maps, such as clf predictions
within the spanned regions, or estimates from the classifier
(might not work for some).
maps_res : int, optional
Number of points in each direction to evaluate.
Points are between axis limits, which are set automatically by
matplotlib. Higher number will yield smoother decision lines but come
at the cost of O^2 classifying time/memory.
vals : array of floats, optional
Where to draw the contour lines if maps='estimates'
data_callback : callable, optional
Callable object to preprocess the new data points.
Classified points of the form samples = data_callback(xysamples).
I.e. this can be a function to normalize them, or cache them
before they are classified.
"""
if vals is None:
vals = [-1, 0, 1]
if False:
## from mvpa2.misc.data_generators import *
## from mvpa2.clfs.svm import *
## from mvpa2.clfs.knn import *
## ds = dumb_feature_binary_dataset()
dataset = normal_feature_dataset(nfeatures=2, nchunks=5,
snr=10, nlabels=4, means=[ [0,1], [1,0], [1,1], [0,0] ])
dataset.samples += dataset.sa.chunks[:, None]*0.1 # slight shifts for chunks ;)
#dataset = normal_feature_dataset(nfeatures=2, nlabels=3, means=[ [0,1], [1,0], [1,1] ])
#dataset = normal_feature_dataset(nfeatures=2, nlabels=2, means=[ [0,1], [1,0] ])
#clf = LinearCSVMC(C=-1)
clf = kNN(4)#LinearCSVMC(C=-1)
clf.train(dataset)
#clf = None
#plot_decision_boundary_2d(ds, clf)
targets = 'targets'
regions = 'chunks'
#maps = 'estimates'
maps = 'targets'
#maps = None #'targets'
res = 50
vals = [-1, 0, 1]
data_callback=None
pl.clf()
if dataset.nfeatures != 2:
raise ValueError('Can only plot a decision boundary in 2D')
Pioff()
a = pl.gca() # f.add_subplot(1,1,1)
attrmap = None
if clf:
estimates_were_enabled = clf.ca.is_enabled('estimates')
clf.ca.enable('estimates')
if targets is None:
targets = clf.get_space()
# Lets reuse classifiers attrmap if it is good enough
attrmap = clf._attrmap
predictions = clf.predict(dataset)
targets_sa_name = targets # bad Yarik -- will rebind targets to actual values
targets_lit = dataset.sa[targets_sa_name].value
utargets_lit = dataset.sa[targets_sa_name].unique
if not (attrmap is not None
and len(attrmap)
and set(clf._attrmap.keys()).issuperset(utargets_lit)):
# create our own
attrmap = AttributeMap(mapnumeric=True)
targets = attrmap.to_numeric(targets_lit)
utargets = attrmap.to_numeric(utargets_lit)
vmin = min(utargets)
vmax = max(utargets)
cmap = pl.cm.RdYlGn # argument
#.........這裏部分代碼省略.........
示例5: AttributeMap
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
print "Sorry - plotting of estimates isn't full supported for %s. " \
"Got exception %s" % (clf, e)
elif maps == 'targets':
map_values = attrmap.to_numeric(predictions_new).reshape(x.shape)
a.imshow(map_values.T, **imshow_kwargs)
#CS = a.contour(x, y, map_values, vals, zorder=6,
# linestyles=linestyles, extent=extent, colors='k')
# Plot regions belonging to the same pair of attribute given
# (e.g. chunks) and targets attribute
if regions:
chunks_sa = dataset.sa[regions]
chunks_lit = chunks_sa.value
uchunks_lit = chunks_sa.value
chunks_attrmap = AttributeMap(mapnumeric=True)
chunks = chunks_attrmap.to_numeric(chunks_lit)
uchunks = chunks_attrmap.to_numeric(uchunks_lit)
from matplotlib.delaunay.triangulate import Triangulation
from matplotlib.patches import Polygon
# Lets figure out convex halls for each chunk/label pair
for target in utargets:
t_mask = targets == target
for chunk in uchunks:
tc_mask = np.logical_and(t_mask,
chunk == chunks)
tc_samples = dataset.samples[tc_mask]
tr = Triangulation(tc_samples[:, 0],
tc_samples[:, 1])
poly = pl.fill(tc_samples[tr.hull, 0],
tc_samples[tr.hull, 1],
示例6: to_lightsvm_format
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
def to_lightsvm_format(dataset, out, targets_attr='targets',
domain=None, am=None):
"""Export dataset into LightSVM format
Parameters
----------
dataset : Dataset
out
Anything understanding .write(string), such as `File`
targets_attr : string, optional
Name of the samples attribute to be output
domain : {None, 'regression', 'binary', 'multiclass'}, optional
What domain dataset belongs to. If `None`, it would be deduced
depending on the datatype ('regression' if float, classification
in case of int or string, with 'binary'/'multiclass' depending on
the number of unique targets)
am : `AttributeMap` or None, optional
Which mapping to use for storing the non-conformant targets. If
None was provided, new one would be automagically generated
depending on the given/deduced domain.
Returns
-------
am
LightSVM format is an ASCII representation with a single sample per
each line::
output featureIndex:featureValue ... featureIndex:featureValue
where ``output`` is specific for a given domain:
regression
float number
binary
integer labels from {-1, 1}
multiclass
integer labels from {1..ds.targets_attr.nunique}
"""
targets_a = dataset.sa[targets_attr]
targets = targets_a.value
# XXX this all below
# * might become cleaner
# * might be RF to become more generic to be used may be elsewhere as well
if domain is None:
if targets.dtype.kind in ['S', 'i']:
if len(targets_a.unique) == 2:
domain = 'binary'
else:
domain = 'multiclass'
else:
domain = 'regression'
if domain in ['multiclass', 'binary']:
# check if labels are appropriate and provide mapping if necessary
utargets = targets_a.unique
if domain == 'binary' and set(utargets) != set([-1, 1]):
# need mapping
if len(utargets) != 2:
raise ValueError, \
"We need 2 unique targets in %s of %s. Got targets " \
"from set %s" % (targets_attr, dataset, utargets)
if am is None:
am = AttributeMap(dict(zip(utargets, [-1, 1])))
elif set(am.keys()) != set([-1, 1]):
raise ValueError, \
"Provided %s doesn't map into binary " \
"labels -1,+1" % (am,)
elif domain == 'multiclass' \
and set(utargets) != set(range(1, len(utargets)+1)):
if am is None:
am = AttributeMap(dict(zip(utargets,
range(1, len(utargets) + 1))))
elif set(am.keys()) != set([-1, 1]):
raise ValueError, \
"Provided %s doesn't map into multiclass " \
"range 1..N" % (am, )
if am is not None:
# map the targets
targets = am.to_numeric(targets)
for t, s in zip(targets, dataset.samples):
out.write('%g %s\n'
% (t,
' '.join(
'%i:%.8g' % (i, v)
for i,v in zip(range(1, dataset.nfeatures+1), s))))
out.flush() # push it out
return am
示例7: test_attrmap
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_numeric [as 別名]
def test_attrmap():
map_default = {'eins': 0, 'zwei': 2, 'sieben': 1}
map_custom = {'eins': 11, 'zwei': 22, 'sieben': 33}
literal = ['eins', 'zwei', 'sieben', 'eins', 'sieben', 'eins']
literal_nonmatching = ['uno', 'dos', 'tres']
num_default = [0, 2, 1, 0, 1, 0]
num_custom = [11, 22, 33, 11, 33, 11]
# no custom mapping given
am = AttributeMap()
assert_false(am)
ok_(len(am) == 0)
assert_array_equal(am.to_numeric(literal), num_default)
assert_array_equal(am.to_literal(num_default), literal)
ok_(am)
ok_(len(am) == 3)
#
# Tests for recursive mapping + preserving datatype
class myarray(np.ndarray):
pass
assert_raises(KeyError, am.to_literal, [(1, 2), 2, 0])
literal_fancy = [(1, 2), 2, [0], np.array([0, 1]).view(myarray)]
literal_fancy_tuple = tuple(literal_fancy)
literal_fancy_array = np.array(literal_fancy, dtype=object)
for l in (literal_fancy, literal_fancy_tuple,
literal_fancy_array):
res = am.to_literal(l, recurse=True)
assert_equal(res[0], ('sieben', 'zwei'))
assert_equal(res[1], 'zwei')
assert_equal(res[2], ['eins'])
assert_array_equal(res[3], ['eins', 'sieben'])
# types of result and subsequences should be preserved
ok_(isinstance(res, l.__class__))
ok_(isinstance(res[0], tuple))
ok_(isinstance(res[1], str))
ok_(isinstance(res[2], list))
ok_(isinstance(res[3], myarray))
# yet another example
a = np.empty(1, dtype=object)
a[0] = (0, 1)
res = am.to_literal(a, recurse=True)
ok_(isinstance(res[0], tuple))
#
# with custom mapping
am = AttributeMap(map=map_custom)
assert_array_equal(am.to_numeric(literal), num_custom)
assert_array_equal(am.to_literal(num_custom), literal)
# if not numeric nothing is mapped
assert_array_equal(am.to_numeric(num_custom), num_custom)
# even if the map doesn't fit
assert_array_equal(am.to_numeric(num_default), num_default)
# need to_numeric first
am = AttributeMap()
assert_raises(RuntimeError, am.to_literal, [1,2,3])
# stupid args
assert_raises(ValueError, AttributeMap, map=num_custom)
# map mismatch
am = AttributeMap(map=map_custom)
if __debug__:
# checked only in __debug__
assert_raises(KeyError, am.to_numeric, literal_nonmatching)
# needs reset and should work afterwards
am.clear()
assert_array_equal(am.to_numeric(literal_nonmatching), [2, 0, 1])
# and now reverse
am = AttributeMap(map=map_custom)
assert_raises(KeyError, am.to_literal, num_default)
# dict-like interface
am = AttributeMap()
ok_([(k, v) for k, v in am.iteritems()] == [])