本文整理匯總了Python中mvpa2.misc.attrmap.AttributeMap.to_literal方法的典型用法代碼示例。如果您正苦於以下問題:Python AttributeMap.to_literal方法的具體用法?Python AttributeMap.to_literal怎麽用?Python AttributeMap.to_literal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mvpa2.misc.attrmap.AttributeMap
的用法示例。
在下文中一共展示了AttributeMap.to_literal方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_attrmap_conflicts
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_literal [as 別名]
def test_attrmap_conflicts():
am_n = AttributeMap({'a':1, 'b':2, 'c':1})
am_t = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='tuple')
am_l = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='lucky')
q_f = ['a', 'b', 'a', 'c']
# should have no effect on forward mapping
ok_(np.all(am_n.to_numeric(q_f) == am_t.to_numeric(q_f)))
ok_(np.all(am_t.to_numeric(q_f) == am_l.to_numeric(q_f)))
assert_raises(ValueError, am_n.to_literal, [2])
r_t = am_t.to_literal([2, 1])
r_l = am_l.to_literal([2, 1])
示例2: _call
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_literal [as 別名]
def _call(self, dataset):
sens = super(self.__class__, self)._call(dataset)
clf = self.clf
targets_attr = clf.get_space()
if targets_attr in sens.sa:
# if labels are present -- transform them into meaningful tuples
# (or not if just a single beast)
am = AttributeMap(dict([(l, -1) for l in clf.neglabels] + [(l, +1) for l in clf.poslabels]))
# XXX here we still can get a sensitivity per each label
# (e.g. with SMLR as the slave clf), so I guess we should
# tune up Multiclass...Analyzer to add an additional sa
# And here we might need to check if asobjarray call is necessary
# and should be actually done
# asobjarray(
sens.sa[targets_attr] = am.to_literal(sens.sa[targets_attr].value, recurse=True)
return sens
示例3: Classifier
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_literal [as 別名]
#.........這裏部分代碼省略.........
raise NotImplementedError
def _prepredict(self, dataset):
"""Functionality prior prediction
"""
if not ('notrain2predict' in self.__tags__):
# check if classifier was trained if that is needed
if not self.trained:
raise FailedToPredictError(
"Classifier %s wasn't yet trained, therefore can't "
"predict" % self)
nfeatures = dataset.nfeatures #data.shape[1]
# check if number of features is the same as in the data
# it was trained on
if nfeatures != self.__trainednfeatures:
raise ValueError, \
"Classifier %s was trained on data with %d features, " % \
(self, self.__trainednfeatures) + \
"thus can't predict for %d features" % nfeatures
if self.params.retrainable:
if not self.__changedData_isset:
self.__reset_changed_data()
_changedData = self._changedData
data = np.asanyarray(dataset.samples)
_changedData['testdata'] = \
self.__was_data_changed('testdata', data)
if __debug__:
debug('CLF_', "prepredict: Obtained _changedData is %s",
(_changedData,))
def _postpredict(self, dataset, result):
"""Functionality after prediction is computed
"""
self.ca.predictions = result
if self.params.retrainable:
self.__changedData_isset = False
def _predict(self, dataset):
"""Actual prediction
"""
raise NotImplementedError
@accepts_samples_as_dataset
def predict(self, dataset):
"""Predict classifier on data
Shouldn't be overridden in subclasses unless explicitly needed
to do so. Also subclasses trying to call super class's predict
should call _predict if within _predict instead of predict()
since otherwise it would loop
"""
## ??? yoh: changed to asany from as without exhaustive check
data = np.asanyarray(dataset.samples)
if __debug__:
# Verify that we have no NaN/Inf's which we do not "support" ATM
if not np.all(np.isfinite(data)):
raise ValueError(
"Some input data for predict is not finite (NaN or Inf)")
debug("CLF", "Predicting classifier %s on ds %s",
(self, dataset))
# remember the time when started computing predictions
t0 = time.time()
ca = self.ca
# to assure that those are reset (could be set due to testing
# post-training)
ca.reset(['estimates', 'predictions'])
self._prepredict(dataset)
if self.__trainednfeatures > 0 \
or 'notrain2predict' in self.__tags__:
result = self._predict(dataset)
else:
warning("Trying to predict using classifier trained on no features")
if __debug__:
debug("CLF",
"No features were present for training, prediction is " \
"bogus")
result = [None]*data.shape[0]
ca.predicting_time = time.time() - t0
# with labels mapping in-place, we also need to go back to the
# literal labels
if self._attrmap:
try:
result = self._attrmap.to_literal(result)
except KeyError, e:
raise FailedToPredictError, \
"Failed to convert predictions from numeric into " \
"literals: %s" % e
self._postpredict(dataset, result)
return result
示例4: plot_decision_boundary_2d
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_literal [as 別名]
#.........這裏部分代碼省略.........
attrmap = clf._attrmap
predictions = clf.predict(dataset)
targets_sa_name = targets # bad Yarik -- will rebind targets to actual values
targets_lit = dataset.sa[targets_sa_name].value
utargets_lit = dataset.sa[targets_sa_name].unique
if not (attrmap is not None
and len(attrmap)
and set(clf._attrmap.keys()).issuperset(utargets_lit)):
# create our own
attrmap = AttributeMap(mapnumeric=True)
targets = attrmap.to_numeric(targets_lit)
utargets = attrmap.to_numeric(utargets_lit)
vmin = min(utargets)
vmax = max(utargets)
cmap = pl.cm.RdYlGn # argument
# Scatter points
if clf:
all_hits = predictions == targets_lit
else:
all_hits = np.ones((len(targets),), dtype=bool)
targets_colors = {}
for l in utargets:
targets_mask = targets==l
s = dataset[targets_mask]
targets_colors[l] = c \
= cmap((l-vmin)/float(vmax-vmin))
# We want to plot hits and misses with different symbols
hits = all_hits[targets_mask]
misses = np.logical_not(hits)
scatter_kwargs = dict(
c=[c], zorder=10+(l-vmin))
if sum(hits):
a.scatter(s.samples[hits, 0], s.samples[hits, 1], marker='o',
label='%s [%d]' % (attrmap.to_literal(l), sum(hits)),
**scatter_kwargs)
if sum(misses):
a.scatter(s.samples[misses, 0], s.samples[misses, 1], marker='x',
label='%s [%d] (miss)' % (attrmap.to_literal(l), sum(misses)),
edgecolor=[c], **scatter_kwargs)
(xmin, xmax) = a.get_xlim()
(ymin, ymax) = a.get_ylim()
extent = (xmin, xmax, ymin, ymax)
# Create grid to evaluate, predict it
(x,y) = np.mgrid[xmin:xmax:np.complex(0, maps_res),
ymin:ymax:np.complex(0, maps_res)]
news = np.vstack((x.ravel(), y.ravel())).T
try:
news = data_callback(news)
except TypeError: # Not a callable object
pass
imshow_kwargs = dict(origin='lower',
zorder=1,
aspect='auto',
interpolation='bilinear', alpha=0.9, cmap=cmap,
vmin=vmin, vmax=vmax,
extent=extent)
if maps is not None:
if clf is None:
raise ValueError, \
"Please provide classifier for plotting maps of %s" % maps
predictions_new = clf.predict(news)
if maps == 'estimates':
# Contour and show predictions
trained_targets = attrmap.to_numeric(clf.ca.trained_targets)
if len(trained_targets)==2:
linestyles = []
for v in vals:
if v == 0:
linestyles.append('solid')
else:
linestyles.append('dashed')
vmin, vmax = -3, 3 # Gives a nice tonal range ;)
map_ = 'estimates' # should actually depend on estimates
else:
vals = (trained_targets[:-1] + trained_targets[1:])/2.
linestyles = ['solid'] * len(vals)
map_ = 'targets'
try:
clf.ca.estimates.reshape(x.shape)
a.imshow(map_values.T, **imshow_kwargs)
CS = a.contour(x, y, map_values, vals, zorder=6,
linestyles=linestyles, extent=extent, colors='k')
except ValueError, e:
print "Sorry - plotting of estimates isn't full supported for %s. " \
"Got exception %s" % (clf, e)
示例5: test_attrmap
# 需要導入模塊: from mvpa2.misc.attrmap import AttributeMap [as 別名]
# 或者: from mvpa2.misc.attrmap.AttributeMap import to_literal [as 別名]
def test_attrmap():
map_default = {'eins': 0, 'zwei': 2, 'sieben': 1}
map_custom = {'eins': 11, 'zwei': 22, 'sieben': 33}
literal = ['eins', 'zwei', 'sieben', 'eins', 'sieben', 'eins']
literal_nonmatching = ['uno', 'dos', 'tres']
num_default = [0, 2, 1, 0, 1, 0]
num_custom = [11, 22, 33, 11, 33, 11]
# no custom mapping given
am = AttributeMap()
assert_false(am)
ok_(len(am) == 0)
assert_array_equal(am.to_numeric(literal), num_default)
assert_array_equal(am.to_literal(num_default), literal)
ok_(am)
ok_(len(am) == 3)
#
# Tests for recursive mapping + preserving datatype
class myarray(np.ndarray):
pass
assert_raises(KeyError, am.to_literal, [(1, 2), 2, 0])
literal_fancy = [(1, 2), 2, [0], np.array([0, 1]).view(myarray)]
literal_fancy_tuple = tuple(literal_fancy)
literal_fancy_array = np.array(literal_fancy, dtype=object)
for l in (literal_fancy, literal_fancy_tuple,
literal_fancy_array):
res = am.to_literal(l, recurse=True)
assert_equal(res[0], ('sieben', 'zwei'))
assert_equal(res[1], 'zwei')
assert_equal(res[2], ['eins'])
assert_array_equal(res[3], ['eins', 'sieben'])
# types of result and subsequences should be preserved
ok_(isinstance(res, l.__class__))
ok_(isinstance(res[0], tuple))
ok_(isinstance(res[1], str))
ok_(isinstance(res[2], list))
ok_(isinstance(res[3], myarray))
# yet another example
a = np.empty(1, dtype=object)
a[0] = (0, 1)
res = am.to_literal(a, recurse=True)
ok_(isinstance(res[0], tuple))
#
# with custom mapping
am = AttributeMap(map=map_custom)
assert_array_equal(am.to_numeric(literal), num_custom)
assert_array_equal(am.to_literal(num_custom), literal)
# if not numeric nothing is mapped
assert_array_equal(am.to_numeric(num_custom), num_custom)
# even if the map doesn't fit
assert_array_equal(am.to_numeric(num_default), num_default)
# need to_numeric first
am = AttributeMap()
assert_raises(RuntimeError, am.to_literal, [1,2,3])
# stupid args
assert_raises(ValueError, AttributeMap, map=num_custom)
# map mismatch
am = AttributeMap(map=map_custom)
if __debug__:
# checked only in __debug__
assert_raises(KeyError, am.to_numeric, literal_nonmatching)
# needs reset and should work afterwards
am.clear()
assert_array_equal(am.to_numeric(literal_nonmatching), [2, 0, 1])
# and now reverse
am = AttributeMap(map=map_custom)
assert_raises(KeyError, am.to_literal, num_default)
# dict-like interface
am = AttributeMap()
ok_([(k, v) for k, v in am.iteritems()] == [])