當前位置: 首頁>>代碼示例>>Python>>正文


Python Raster.resetMask方法代碼示例

本文整理匯總了Python中molusce.algorithms.dataprovider.Raster.resetMask方法的典型用法代碼示例。如果您正苦於以下問題:Python Raster.resetMask方法的具體用法?Python Raster.resetMask怎麽用?Python Raster.resetMask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在molusce.algorithms.dataprovider.Raster的用法示例。


在下文中一共展示了Raster.resetMask方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_Mask

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
    def test_Mask(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        W = eb.W

        S1 = weightedSum(eb.Sj[1], W)
        S3 = weightedSum(eb.Sj[3], W)
        np.testing.assert_almost_equal(S1, 5.0/8)
        np.testing.assert_almost_equal(S3, 3.0/8)

        noNo = eb.NoNo()
        np.testing.assert_almost_equal(noNo, 0.5)

        noM = eb.NoMed()
        np.testing.assert_almost_equal(noM, (5.0*5/8 + 3.0*3/8)/8)

        medM= eb.MedMed()
        np.testing.assert_almost_equal(medM, 4.0/8)

        medP= eb.MedPer()
        np.testing.assert_almost_equal(medP, 1.0)
開發者ID:nextgis,項目名稱:molusce,代碼行數:27,代碼來源:test_ebmodel.py

示例2: TestMCE

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestMCE(unittest.TestCase):
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]

        self.state  = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals= [0])
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]
        self.areaAnalyst = AreaAnalyst(self.state, second=None)

    def test_MCE(self):

        data = [
            [1.0,     4.0, 6.0, 7.0],
            [1.0/4,   1.0, 3.0, 4.0],
            [1.0/6, 1.0/3, 1.0, 2.0],
            [1.0/7, 1.0/4, 1.0/2, 1]
        ]
        # Multiband
        factor = Raster('../../examples/two_band.tif')

        mce = MCE([self.factor, factor, self.factor], data, 1, 2, self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        # One-band
        mce = MCE([self.factor, self.factor, self.factor, self.factor], data, 1, 2, self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        mask = [
            [False, False, False],
            [False, False, False],
            [False, False, True]
        ]
        p = mce.getPrediction(self.state).getBand(1)
        self.assertEquals(p.dtype, np.uint8)
        answer = [      # The locations where the big numbers are stored must be masked (see mask and self.state)
            [1,   3, 1],
            [1,   3, 1],
            [100, 1, 100]
        ]
        answer = np.ma.array(data = answer, mask = mask)
        assert_almost_equal(p, answer)

        c = mce.getConfidence().getBand(1)
        self.assertEquals(c.dtype, np.uint8)
        answer = [      # The locations where the big numbers are stored must be masked (see mask and self.state)
            [sum((w*100).astype(int))/3,   0,  sum((w*100).astype(int))],
            [sum((w*100).astype(int)),     0,  sum((w*100).astype(int))/3],
            [10000,  sum((w*100).astype(int)),  10000]
        ]
        answer = np.ma.array(data = answer, mask = mask)
        assert_almost_equal(c, answer)
開發者ID:nextgis,項目名稱:molusce,代碼行數:62,代碼來源:test_mce.py

示例3: TestSimulator

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestSimulator(unittest.TestCase):
    def setUp(self):

        # Raster1:
        # ~ [1, 1, 3,],
        # ~ [3, 2, 1,],
        # ~ [0, 3, 1,]
        self.raster1 = Raster("../../examples/multifact.tif")
        self.raster1.resetMask([0])

        self.X = np.array([[1, 2, 3], [3, 2, 1], [0, 1, 1]])
        self.X = np.ma.array(self.X, mask=(self.X == 0))
        self.raster2 = Raster()
        self.raster2.create([self.X], self.raster1.getGeodata())

        self.aa = AreaAnalyst(self.raster1, self.raster2)

        self.crosstab = CrossTableManager(self.raster1, self.raster2)

        # Simple model
        self.model = Model(state=self.raster1)

    def test_compute_table(self):

        # print self.crosstab.getCrosstable().getCrosstable()
        # CrossTab:
        #  [[ 3.  1.  0.]
        #   [ 0.  1.  0.]
        #   [ 1.  0.  2.]]
        prediction = self.model.getPrediction(self.raster1)
        # print prediction.getBand(1)
        # prediction = [[1.0 1.0 6.0]
        #  [6.0 5.0 1.0]
        #  [-- 6.0 1.0]]
        # confidence = self.model.getConfidence()
        # print confidence.getBand(1)
        # confidence =     [[1.0 0.5  0.33]
        #  [0.5 0.33 0.25]
        #  [--  0.25 0.2]]
        result = np.array([[2.0, 1.0, 3.0], [1.0, 2.0, 1.0], [0, 3.0, 1.0]])
        result = np.ma.array(result, mask=(result == 0))

        simulator = Simulator(
            state=self.raster1, factors=None, model=self.model, crosstable=self.crosstab
        )  # The model does't use factors
        simulator.setIterationCount(1)
        simulator.simN()
        state = simulator.getState().getBand(1)
        assert_array_equal(result, state)

        result = np.array([[2.0, 1.0, 1.0], [2.0, 2.0, 1.0], [0, 3.0, 1.0]])
        result = np.ma.array(result, mask=(result == 0))

        simulator = Simulator(self.raster1, None, self.model, self.crosstab)
        simulator.setIterationCount(2)
        simulator.simN()
        state = simulator.getState().getBand(1)
        assert_array_equal(result, state)
開發者ID:nextgis,項目名稱:molusce,代碼行數:60,代碼來源:test_sim.py

示例4: test_cat2vect

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
    def test_cat2vect(self):
        smp = Sampler(self.state, self.factors,  self.output, ns=0)
        assert_array_equal(smp.cat2vect(0), [1, 0])
        assert_array_equal(smp.cat2vect(1), [0, 1])
        assert_array_equal(smp.cat2vect(2), [0, 0])

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors,  self.output, ns=0)
        assert_array_equal(smp.cat2vect(1), [1])
        assert_array_equal(smp.cat2vect(2), [0])
開發者ID:nextgis,項目名稱:molusce,代碼行數:13,代碼來源:test_sampler.py

示例5: test_getStat

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
    def test_getStat(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        stat = eb.getStat(nIter=3)
        ans0 =  {'NoNo': 0.5, 'NoMed': (5.0*5/8 + 3.0*3/8)/8, 'MedMed': 4.0/8, 'MedPer': 1.0, 'PerPer': 1.0}
        for k in stat[0].keys():
            np.testing.assert_almost_equal(stat[0][k],ans0[k])
        ans1 = {'NoNo': 0.5, 'NoMed': (5.0/8+5.0/32 + 3.0/16 + 3.0/32)/2, 'MedMed': 4.0/8, 'MedPer': 1.0, 'PerPer': 1.0}
        for k in stat[1].keys():
            np.testing.assert_almost_equal(stat[0][k],ans1[k])
開發者ID:nextgis,項目名稱:molusce,代碼行數:16,代碼來源:test_ebmodel.py

示例6: test_get_state

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
    def test_get_state(self):
        smp = Sampler(self.state, self.factors,  self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1,1), [0, 0])
        assert_array_equal(smp.get_state(self.state, 0,0), [0, 1])

        smp = Sampler(self.state, self.factors,  self.output, ns=1)
        res = [ 0, 1, 0, 0, 0, 1,
                0, 1, 0, 0, 0, 1,
                1, 0, 0, 1, 0, 0,
            ]
        assert_array_equal(smp.get_state(self.state, 1,1), res)

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors,  self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1,1), [0])
        assert_array_equal(smp.get_state(self.state, 0,0), [1])
開發者ID:nextgis,項目名稱:molusce,代碼行數:19,代碼來源:test_sampler.py

示例7: TestLRManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestLRManager (unittest.TestCase):
    def setUp(self):
        self.output  = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]
        self.output.resetMask([0])
        self.state   = self.output
        self.factors = [Raster('../../examples/sites.tif'), Raster('../../examples/sites.tif')]
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]


        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_LR(self):
        data = [
            [3.0, 1.0, 3.0],
            [3.0, 1.0, 3.0],
            [0,   3.0, 1.0]
        ]
        result = np.ma.array(data = data, mask = (data==0))

        lr = LR(ns=0)   # 3-class problem
        lr.setTrainingData(self.state, self.factors, self.output)
        lr.train()
        predict = lr.getPrediction(self.state, self.factors)
        predict = predict.getBand(1)
        assert_array_equal(predict, result)

        lr = LR(ns=1) # Two-class problem (it's because of boundary effect)
        lr.setTrainingData(self.state1, self.factors1, self.output1)
        lr.train()
        predict = lr.getPrediction(self.state1, self.factors1)
        predict = predict.getBand(1)
        data = [
            [0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 2.0, 0.0],
            [0.0, 2.0, 2.0, 0.0],
            [0.0, 0.0, 0.0, 0.0],
        ]
        result = np.ma.array(data = data, mask = (data==0))
        assert_array_equal(predict, result)
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:48,代碼來源:test_lr.py

示例8: TestAreaAnalysisManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestAreaAnalysisManager (unittest.TestCase):
    def setUp(self):
        self.r1 = Raster('../../examples/multifact.tif')
        # r1 -> r1 transition
        self.r1r1 = [
            [5,  5,  15,],
            [15, 10, 5, ],
            [0,  15, 5, ]
        ]
        
        self.r2  = Raster('../../examples/multifact.tif')
        self.r2.resetMask([0])
        self.r2r2 = [
            [0,   0, 8,],
            [8,   4, 0,],
            [100, 8, 0,]
        ]
        
        self.r3 = Raster('../../examples/multifact.tif')
        self.r3.resetMask([2])
        
    def test_AreaAnalyst(self):
        aa = AreaAnalyst(self.r1, self.r1)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r1r1)
        
        # Masked raster
        aa = AreaAnalyst(self.r2, self.r2)
        raster = aa.getChangeMap()  
        band = raster.getBand(1)
        assert_array_equal(band, self.r2r2)
    
    def test_encode(self):
        aa = AreaAnalyst(self.r1, self.r1)
        self.assertEqual(aa.classes, [0,1,2,3])
        self.assertEqual(aa.encode(1,2), 6)
        for initClass in range(4):
            for finalClass in range(4):
                k = aa.encode(initClass, finalClass)
                self.assertEqual(aa.decode(k), (initClass, finalClass))
        self.assertEqual(aa.finalCodes(0), [0,1,2,3])
        self.assertEqual(aa.finalCodes(1), [4,5,6,7])
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:45,代碼來源:test_manager.py

示例9: test_coarse

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
    def test_coarse(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        eb.coarse(2)
        # W
        answer = np.array([[1.0, 0.25], [0.5, 0.25]])
        np.testing.assert_array_equal(eb.W, answer)
        # Rj
        answer1 = np.array([[1.0, 1.0], [0, 0]])
        answer3 = np.array([[0, 0], [1.0, 1.0]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Rj, ans)
        # Sj
        answer1 = np.array([[3.0/4, 0.0], [1.0, 0]])
        answer3 = np.array([[1.0/4, 1.0], [0, 1.0]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Sj, ans)

        eb.coarse(2)
        # W
        answer = np.array([[0.5]])
        np.testing.assert_array_equal(eb.W, answer)
        # Rj
        answer1 = np.array([[(1+1.0/4)/2]])
        answer3 = np.array([[(1.0/2 + 1.0/4)/2]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Rj, ans)
        # Sj
        answer1 = np.array([[(3.0/4 + 0.5)/2]])
        answer3 = np.array([[(1.0/4 + 1.0/4 + 1.0/4 )/2]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Sj, ans)
開發者ID:nextgis,項目名稱:molusce,代碼行數:38,代碼來源:test_ebmodel.py

示例10: TestWoEManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestWoEManager (unittest.TestCase):
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
                #~ [1,1,3]
                #~ [3,2,1]
                #~ [0,3,1]

        self.sites  = Raster('../../examples/sites.tif')
                    #~ [1,2,1],
                    #~ [1,2,1],
                    #~ [0,1,2]
        self.sites.resetMask(maskVals= [0])

        self.mask = [
            [False, False, False,],
            [False, False, False,],
            [True,  False, False,]
        ]
        fact = [
            [1, 1, 3,],
            [3, 2, 1,],
            [0, 3, 1,]
        ]
        site = [
            [False, True,  False,],
            [False, True,  False,],
            [False, False, True,]
        ]
        self.factraster  = ma.array(data = fact, mask=self.mask, dtype=np.int)
        self.sitesraster = ma.array(data = site, mask=self.mask, dtype=np.bool)

    def test_CheckBins(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa, bins = None)
        self.assertTrue(w1.checkBins())
        w1 = WoeManager([self.factor], aa, bins = {0: [None]})
        self.assertTrue(w1.checkBins())
        w1 = WoeManager([self.factor], aa, bins = {0: [[1, 2, 3]]})
        self.assertTrue(w1.checkBins())
        w1 = WoeManager([self.factor], aa, bins = {0: [[1, 4]]})
        self.assertFalse(w1.checkBins())
        w1 = WoeManager([self.factor], aa, bins = {0: [[-1, 1]]})
        self.assertFalse(w1.checkBins())
        w1 = WoeManager([self.factor], aa, bins = {0: [[2, 3, 1]]})
        self.assertFalse(w1.checkBins())


    def test_WoeManager(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa)
        w1.train()
        p = w1.getPrediction(self.sites).getBand(1)
        answer = [[0,3,0], [0,3,0], [9,0,3]]
        answer = ma.array(data = answer, mask = self.mask)
        assert_array_equal(p, answer)

        initState = Raster('../../examples/data.tif')
            #~ [1,1,1,1],
            #~ [1,1,2,2],
            #~ [2,2,2,2],
            #~ [3,3,3,3]
        finalState = Raster('../../examples/data1.tif')
            #~ [1,1,2,3],
            #~ [3,1,2,3],
            #~ [3,3,3,3],
            #~ [1,1,3,2]
        aa = AreaAnalyst(initState, finalState)
        w = WoeManager([initState], aa)
        w.train()
        #print w.woe
        p = w.getPrediction(initState).getBand(1)
        self.assertEquals(p.dtype, np.uint8)

        # Calculate by hands:
        #1->1 transition raster:
        r11 = [
            [1, 1, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        #1->2 raster:
        r12 = [
            [0, 0, 1, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        #1->3 raster:
        r13 = [
            [0, 0, 0, 1],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        # 2->1
        r21 = [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
#.........這裏部分代碼省略.........
開發者ID:nextgis,項目名稱:molusce,代碼行數:103,代碼來源:test_manager.py

示例11: TestLRManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestLRManager (unittest.TestCase):
    def setUp(self):
        self.output  = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]
        self.output.resetMask([0])
        self.state   = self.output
        self.factors = [Raster('../../examples/sites.tif'), Raster('../../examples/sites.tif')]
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]


        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_LR(self):
        #~ data = [
            #~ [3.0, 1.0, 3.0],
            #~ [3.0, 1.0, 3.0],
            #~ [0,   3.0, 1.0]
        #~ ]
        #~ result = np.ma.array(data = data, mask = (data==0))

        lr = LR(ns=0)   # 3-class problem
        lr.setState(self.state)
        lr.setFactors(self.factors)
        lr.setOutput(self.output)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state, self.factors)
        predict = predict.getBand(1)
        assert_array_equal(predict, self.output.getBand(1))

        lr = LR(ns=1) # Two-class problem (it's because of boundary effect)
        lr.setState(self.state1)
        lr.setFactors(self.factors1)
        lr.setOutput(self.output1)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state1, self.factors1, calcTransitions=True)
        predict = predict.getBand(1)
        self.assertEquals(predict.dtype, np.uint8)
        data = [
            [0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 2.0, 0.0],
            [0.0, 2.0, 2.0, 0.0],
            [0.0, 0.0, 0.0, 0.0],
        ]
        result = np.ma.array(data = data, mask = (data==0))
        assert_array_equal(predict, result)

        # Confidence is zero
        confid = lr.getConfidence()
        self.assertEquals(confid.getBand(1).dtype, np.uint8)

        # Transition Potentials
        potentials = lr.getTransitionPotentials()
        cats = self.output.getBandGradation(1)
        for cat in [1.0, 2.0]:
            map = potentials[cat]
            self.assertEquals(map.getBand(1).dtype, np.uint8)
開發者ID:nextgis,項目名稱:molusce,代碼行數:66,代碼來源:test_lr.py

示例12: TestWoEManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import resetMask [as 別名]
class TestWoEManager(unittest.TestCase):
    def setUp(self):
        self.factor = Raster("../../examples/multifact.tif")

        self.sites = Raster("../../examples/sites.tif")
        self.sites.resetMask(maskVals=[0])

        mask = [[False, False, False], [False, False, False], [True, False, False]]
        fact = [[1, 1, 3], [3, 2, 1], [0, 3, 1]]
        site = [[False, True, False], [False, True, False], [False, False, True]]
        self.factraster = ma.array(data=fact, mask=mask, dtype=np.int)
        self.sitesraster = ma.array(data=site, mask=mask, dtype=np.bool)

    def test_WoeManager(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa)
        p = w1.getPrediction(self.sites).getBand(1)
        assert_array_equal(p, self.sites.getBand(1))

        initState = Raster("../../examples/data.tif")
        finalState = Raster("../../examples/data1.tif")
        aa = AreaAnalyst(initState, finalState)
        w = WoeManager([initState], aa)
        p = w.getPrediction(initState).getBand(1)

        # Calculate by hands:
        # 1->1 transition raster:
        r11 = [[1, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->2 raster:
        r12 = [[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->3 raster:
        r13 = [[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->1
        r21 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->2
        r22 = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->3
        r23 = [[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 0]]
        # 3->1
        r31 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0]]
        # 3->2
        r32 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]
        # 3->3
        r33 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]]
        geodata = initState.getGeodata()
        sites = {"11": r11, "12": r12, "13": r13, "21": r21, "22": r22, "23": r23, "31": r31, "32": r32, "33": r33}
        woeDict = {}  # WoE of transitions
        for k in sites.keys():  #
            if k != "21":  # !!! r21 is zero
                x = Raster()
                x.create([np.ma.array(data=sites[k])], geodata)
                sites[k] = x
                woeDict[k] = woe(initState.getBand(1), x.getBand(1))
        # w1max = np.maximum(woeDict['11'], woeDict['12'], woeDict['13'])
        # w2max = np.maximum(woeDict['22'], woeDict['23'])
        # w3max = np.maximum(woeDict['31'], woeDict['32'], woeDict['33'])
        # Answer is index of finalClass that maximizes weights of transiotion initClass -> finalClass
        answer = [[1, 1, 1, 1], [1, 1, 3, 3], [3, 3, 3, 3], [1, 1, 1, 1]]
        assert_array_equal(p, answer)

        w = WoeManager([initState], aa, bins={0: [[2]]})
        p = w.getPrediction(initState).getBand(1)
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:64,代碼來源:test_manager.py


注:本文中的molusce.algorithms.dataprovider.Raster.resetMask方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。