當前位置: 首頁>>代碼示例>>Python>>正文


Python Raster.getBand方法代碼示例

本文整理匯總了Python中molusce.algorithms.dataprovider.Raster.getBand方法的典型用法代碼示例。如果您正苦於以下問題:Python Raster.getBand方法的具體用法?Python Raster.getBand怎麽用?Python Raster.getBand使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在molusce.algorithms.dataprovider.Raster的用法示例。


在下文中一共展示了Raster.getBand方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_normalize

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
    def test_normalize(self):
        multifact = [
            [1,1,3],
            [3,2,1],
            [0,3,1],
        ]

        # Normalize using std and mean
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Normalize using min and max
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Two normalization procedures
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:32,代碼來源:test_dataprovider.py

示例2: test_WoeManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
    def test_WoeManager(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa)
        p = w1.getPrediction(self.sites).getBand(1)
        assert_array_equal(p, self.sites.getBand(1))

        initState = Raster("../../examples/data.tif")
        finalState = Raster("../../examples/data1.tif")
        aa = AreaAnalyst(initState, finalState)
        w = WoeManager([initState], aa)
        p = w.getPrediction(initState).getBand(1)

        # Calculate by hands:
        # 1->1 transition raster:
        r11 = [[1, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->2 raster:
        r12 = [[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->3 raster:
        r13 = [[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->1
        r21 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->2
        r22 = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->3
        r23 = [[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 0]]
        # 3->1
        r31 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0]]
        # 3->2
        r32 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]
        # 3->3
        r33 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]]
        geodata = initState.getGeodata()
        sites = {"11": r11, "12": r12, "13": r13, "21": r21, "22": r22, "23": r23, "31": r31, "32": r32, "33": r33}
        woeDict = {}  # WoE of transitions
        for k in sites.keys():  #
            if k != "21":  # !!! r21 is zero
                x = Raster()
                x.create([np.ma.array(data=sites[k])], geodata)
                sites[k] = x
                woeDict[k] = woe(initState.getBand(1), x.getBand(1))
        # w1max = np.maximum(woeDict['11'], woeDict['12'], woeDict['13'])
        # w2max = np.maximum(woeDict['22'], woeDict['23'])
        # w3max = np.maximum(woeDict['31'], woeDict['32'], woeDict['33'])
        # Answer is index of finalClass that maximizes weights of transiotion initClass -> finalClass
        answer = [[1, 1, 1, 1], [1, 1, 3, 3], [3, 3, 3, 3], [1, 1, 1, 1]]
        assert_array_equal(p, answer)

        w = WoeManager([initState], aa, bins={0: [[2]]})
        p = w.getPrediction(initState).getBand(1)
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:51,代碼來源:test_manager.py

示例3: test_save

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
 def test_save(self):
     try:
         filename = 'temp.tiff'
         self.r1.save(filename)
         r2 = Raster(filename)
         self.assertEqual(r2.get_dtype(), self.r1.get_dtype())
         self.assertEqual(r2.getBandsCount(), self.r1.getBandsCount())
         for i in range(r2.getBandsCount()):
             assert_array_equal(r2.getBand(i+1), self.r1.getBand(i+1))
     finally:
         os.remove(filename)
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:13,代碼來源:test_dataprovider.py

示例4: TestRaster

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
class TestRaster (unittest.TestCase):
    def setUp(self):
        self.r1 = Raster('examples/multifact.tif')
        self.r2 = Raster('examples/sites.tif')
        self.r3 = Raster('examples/two_band.tif')

        # r1
        data1 = np.array(
            [
                [1,1,3],
                [3,2,1],
                [0,3,1]
            ])
        # r2
        data2 = np.array(
            [
                [1,2,1],
                [1,2,1],
                [0,1,2]
            ])
        mask = [
            [False, False, False],
            [False, False, False],
            [False, False, False]
        ]
        self.data1 = ma.array(data=data1, mask=mask)
        self.data2 = ma.array(data=data2, mask=mask)

    def test_RasterInit(self):
        self.assertEqual(self.r1.getBandsCount(), 1)
        band = self.r1.getBand(1)
        shape = band.shape
        x = self.r1.getXSize()
        y = self.r1.getYSize()
        self.assertEqual(shape, (x,y))

        self.assertEqual(self.r2.getBandsCount(), 1)
        band = self.r2.getBand(1)
        assert_array_equal(band, self.data2)

        self.assertTrue(self.r1.geoDataMatch(self.r2))

        self.assertTrue(self.r1.isMetricProj())


    def test_getBandStat(self):
        stat = self.r1.getBandStat(1)
        self.assertAlmostEqual(stat['mean'], 15.0/9)
        self.assertAlmostEqual(stat['std'], np.sqrt(10.0/9))

    def test_normalize(self):
        multifact = [
            [1,1,3],
            [3,2,1],
            [0,3,1],
        ]

        # Normalize using std and mean
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Normalize using min and max
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Two normalization procedures
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)


    def test_getNeighbours(self):
        neighbours = self.r2.getNeighbours(row=1,col=0, size=0)
        self.assertEqual(neighbours, [[1]])

        neighbours = self.r2.getNeighbours(row=1,col=1, size=1)
        assert_array_equal(neighbours, [self.data2])

        neighbours = self.r3.getNeighbours(row=1,col=1, size=1)
        assert_array_equal(neighbours, [self.data2, self.data1])

        # Check pixel on the raster bound and nonzero neighbour size
        self.assertRaises(ProviderError, self.r2.getNeighbours, col=1, row=0, size=1)
        self.assertRaises(ProviderError, self.r2.getNeighbours, col=1, row=1, size=2)

    def test_geodata(self):
        geodata = self.r1.getGeodata()
        self.r1.setGeoData(geodata)
        geodata['xSize'] = geodata['xSize'] + 10
#.........這裏部分代碼省略.........
開發者ID:asiaairsurvey,項目名稱:molusce,代碼行數:103,代碼來源:test_dataprovider.py

示例5: test_WoeManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
    def test_WoeManager(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa)
        w1.train()
        p = w1.getPrediction(self.sites).getBand(1)
        answer = [[0,3,0], [0,3,0], [9,0,3]]
        answer = ma.array(data = answer, mask = self.mask)
        assert_array_equal(p, answer)

        initState = Raster('../../examples/data.tif')
            #~ [1,1,1,1],
            #~ [1,1,2,2],
            #~ [2,2,2,2],
            #~ [3,3,3,3]
        finalState = Raster('../../examples/data1.tif')
            #~ [1,1,2,3],
            #~ [3,1,2,3],
            #~ [3,3,3,3],
            #~ [1,1,3,2]
        aa = AreaAnalyst(initState, finalState)
        w = WoeManager([initState], aa)
        w.train()
        #print w.woe
        p = w.getPrediction(initState).getBand(1)
        self.assertEquals(p.dtype, np.uint8)

        # Calculate by hands:
        #1->1 transition raster:
        r11 = [
            [1, 1, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        #1->2 raster:
        r12 = [
            [0, 0, 1, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        #1->3 raster:
        r13 = [
            [0, 0, 0, 1],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        # 2->1
        r21 = [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        # 2->2
        r22 = [
            [0, 0, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]
        ]
        # 2->3
        r23 = [
            [0, 0, 0, 0],
            [0, 0, 0, 1],
            [1, 1, 1, 1],
            [0, 0, 0, 0]
        ]
        # 3->1
        r31 = [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [1, 1, 0, 0]
        ]
        # 3->2
        r32 = [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 1]
        ]
        # 3->3
        r33 = [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 1, 0]
        ]
        geodata = initState.getGeodata()
        sites = {'11': r11, '12': r12, '13': r13, '21': r21, '22': r22, '23': r23, '31': r31, '32': r32, '33': r33}
        woeDict = {}    # WoE of transitions
        for k in sites.keys(): #
            if k !='21' : # !!! r21 is zero
                x = Raster()
                x.create([np.ma.array(data=sites[k])], geodata)
                sites[k] = x
                woeDict[k] = woe(initState.getBand(1), x.getBand(1))
        #w1max = np.maximum(woeDict['11'], woeDict['12'], woeDict['13'])
#.........這裏部分代碼省略.........
開發者ID:nextgis,項目名稱:molusce,代碼行數:103,代碼來源:test_manager.py

示例6: TestLRManager

# 需要導入模塊: from molusce.algorithms.dataprovider import Raster [as 別名]
# 或者: from molusce.algorithms.dataprovider.Raster import getBand [as 別名]
class TestLRManager (unittest.TestCase):
    def setUp(self):
        self.output  = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]
        self.output.resetMask([0])
        self.state   = self.output
        self.factors = [Raster('../../examples/sites.tif'), Raster('../../examples/sites.tif')]
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]


        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_LR(self):
        #~ data = [
            #~ [3.0, 1.0, 3.0],
            #~ [3.0, 1.0, 3.0],
            #~ [0,   3.0, 1.0]
        #~ ]
        #~ result = np.ma.array(data = data, mask = (data==0))

        lr = LR(ns=0)   # 3-class problem
        lr.setState(self.state)
        lr.setFactors(self.factors)
        lr.setOutput(self.output)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state, self.factors)
        predict = predict.getBand(1)
        assert_array_equal(predict, self.output.getBand(1))

        lr = LR(ns=1) # Two-class problem (it's because of boundary effect)
        lr.setState(self.state1)
        lr.setFactors(self.factors1)
        lr.setOutput(self.output1)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state1, self.factors1, calcTransitions=True)
        predict = predict.getBand(1)
        self.assertEquals(predict.dtype, np.uint8)
        data = [
            [0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 2.0, 0.0],
            [0.0, 2.0, 2.0, 0.0],
            [0.0, 0.0, 0.0, 0.0],
        ]
        result = np.ma.array(data = data, mask = (data==0))
        assert_array_equal(predict, result)

        # Confidence is zero
        confid = lr.getConfidence()
        self.assertEquals(confid.getBand(1).dtype, np.uint8)

        # Transition Potentials
        potentials = lr.getTransitionPotentials()
        cats = self.output.getBandGradation(1)
        for cat in [1.0, 2.0]:
            map = potentials[cat]
            self.assertEquals(map.getBand(1).dtype, np.uint8)
開發者ID:nextgis,項目名稱:molusce,代碼行數:66,代碼來源:test_lr.py


注:本文中的molusce.algorithms.dataprovider.Raster.getBand方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。