當前位置: 首頁>>代碼示例>>Python>>正文


Python MultiGrid.place_agent方法代碼示例

本文整理匯總了Python中mesa.space.MultiGrid.place_agent方法的典型用法代碼示例。如果您正苦於以下問題:Python MultiGrid.place_agent方法的具體用法?Python MultiGrid.place_agent怎麽用?Python MultiGrid.place_agent使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mesa.space.MultiGrid的用法示例。


在下文中一共展示了MultiGrid.place_agent方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: WalkerWorld

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class WalkerWorld(Model):
    '''
    Random walker world.
    '''
    height = 10
    width = 10

    def __init__(self, height, width, agent_count):
        '''
        Create a new WalkerWorld.

        Args:
            height, width: World size.
            agent_count: How many agents to create.
        '''
        self.height = height
        self.width = width
        self.grid = MultiGrid(self.height, self.width, torus=True)
        self.agent_count = agent_count

        self.schedule = RandomActivation(self)
        # Create agents
        for i in range(self.agent_count):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            a = WalkerAgent((x, y), self, True)
            self.schedule.add(a)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.schedule.step()
開發者ID:GeoESW,項目名稱:mesa,代碼行數:33,代碼來源:test_random_walk.py

示例2: Money_Model

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class Money_Model(Model):
    def __init__(self, N, width=50, height=50, torus=True):
        self.num_agents = N
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(height, width, torus)
        self.create_agents()
        self.dc = DataCollector({"Gini": lambda m: m.compute_gini()},
                               {"Wealth": lambda a: a.wealth})
        self.running = True

    def create_agents(self):
        for i in range(self.num_agents):
            a = Money_Agent(i)
            self.schedule.add(a)
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.dc.collect(self)
        self.schedule.step()
        
    def run_model(self, steps):
        for i in range(steps):
            self.step()
    
    def compute_gini(self):
        agent_wealths = [agent.wealth for agent in self.schedule.agents]
        x = sorted(agent_wealths)
        N = self.num_agents
        B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
        return (1 + (1/N) - 2*B)
開發者ID:dmasad,項目名稱:Scientific-Python-for-CSS-605,代碼行數:34,代碼來源:money_model.py

示例3: MoneyModel

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class MoneyModel(Model):
    """A simple model of an economy where agents exchange currency at random.

    All the agents begin with one unit of currency, and each time step can give
    a unit of currency to another agent. Note how, over time, this produces a
    highly skewed distribution of wealth.
    """

    def __init__(self, N, width, height):
        self.num_agents = N
        self.running = True
        self.grid = MultiGrid(height, width, True)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Gini": compute_gini},
            agent_reporters={"Wealth": lambda a: a.wealth}
        )
        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
            # Add the agent to a random grid cell
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()

    def run_model(self, n):
        for i in range(n):
            self.step()
開發者ID:GeoESW,項目名稱:mesa,代碼行數:35,代碼來源:model.py

示例4: MoneyModel

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class MoneyModel(Model):
    """A model with some number of agents."""
    def __init__(self, N, width, height):
        self.num_agents = N
        self.running = True
        self.grid = MultiGrid(height, width, True)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(model_reporters={"Gini": compute_gini},
                agent_reporters={"Wealth": lambda a: a.wealth})
        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i)
            self.schedule.add(a)
            # Add the agent to a random grid cell
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()
    
    def run_model(self, n):
        for i in range(n):
            self.step()
開發者ID:Eleonore9,項目名稱:mesa,代碼行數:27,代碼來源:MoneyModel.py

示例5: TestMultiGrid

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class TestMultiGrid(unittest.TestCase):
    '''
    Testing a toroidal MultiGrid
    '''

    torus = True

    def setUp(self):
        '''
        Create a test non-toroidal grid and populate it with Mock Agents
        '''
        width = 3
        height = 5
        self.grid = MultiGrid(width, height, self.torus)
        self.agents = []
        counter = 0
        for x in range(width):
            for y in range(height):
                for i in range(TEST_MULTIGRID[x][y]):
                    counter += 1
                    # Create and place the mock agent
                    a = MockAgent(counter, None)
                    self.agents.append(a)
                    self.grid.place_agent(a, (x, y))

    def test_agent_positions(self):
        '''
        Ensure that the agents are all placed properly on the MultiGrid.
        '''
        for agent in self.agents:
            x, y = agent.pos
            assert agent in self.grid[x][y]

    def test_neighbors(self):
        '''
        Test the toroidal MultiGrid neighborhood methods.
        '''

        neighborhood = self.grid.get_neighborhood((1, 1), moore=True)
        assert len(neighborhood) == 8

        neighborhood = self.grid.get_neighborhood((1, 4), moore=True)
        assert len(neighborhood) == 8

        neighborhood = self.grid.get_neighborhood((0, 0), moore=False)
        assert len(neighborhood) == 4

        neighbors = self.grid.get_neighbors((1, 4), moore=False)
        assert len(neighbors) == 0

        neighbors = self.grid.get_neighbors((1, 4), moore=True)
        assert len(neighbors) == 5

        neighbors = self.grid.get_neighbors((1, 1), moore=False,
                                            include_center=True)
        assert len(neighbors) == 7

        neighbors = self.grid.get_neighbors((1, 3), moore=False, radius=2)
        assert len(neighbors) == 11
開發者ID:GeoESW,項目名稱:mesa,代碼行數:61,代碼來源:test_grid.py

示例6: Charts

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class Charts(Model):

    # grid height
    grid_h = 20
    # grid width
    grid_w = 20

    """init parameters "init_people", "rich_threshold", and "reserve_percent"
       are all UserSettableParameters"""
    def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
                 reserve_percent=50,):
        self.height = height
        self.width = width
        self.init_people = init_people
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.width, self.height, torus=True)
        # rich_threshold is the amount of savings a person needs to be considered "rich"
        self.rich_threshold = rich_threshold
        self.reserve_percent = reserve_percent
        # see datacollector functions above
        self.datacollector = DataCollector(model_reporters={
                                           "Rich": get_num_rich_agents,
                                           "Poor": get_num_poor_agents,
                                           "Middle Class": get_num_mid_agents,
                                           "Savings": get_total_savings,
                                           "Wallets": get_total_wallets,
                                           "Money": get_total_money,
                                           "Loans": get_total_loans},
                                           agent_reporters={
                                           "Wealth": lambda x: x.wealth})

        # create a single bank for the model
        self.bank = Bank(1, self, self.reserve_percent)

        # create people for the model according to number of people set by user
        for i in range(self.init_people):
            # set x, y coords randomly within the grid
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
            # place the Person object on the grid at coordinates (x, y)
            self.grid.place_agent(p, (x, y))
            # add the Person object to the model schedule
            self.schedule.add(p)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        # tell all the agents in the model to run their step function
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self):
        for i in range(self.run_time):
            self.step()
開發者ID:projectmesa,項目名稱:mesa,代碼行數:59,代碼來源:model.py

示例7: WolfSheepPredation

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class WolfSheepPredation(Model):
    '''
    Wolf-Sheep Predation Model
    '''

    initial_sheep = 100
    initial_wolves = 50
    sheep_gain_from_food = 4

    grass = False

    wolf_gain_from_food = 20
    sheep_reproduce = 0.04
    wolf_reproduce = 0.05

    height = 20
    width = 20

    def __init__(self, height=20, width=20,
                 initial_sheep=100, initial_wolves=50, sheep_reproduce=0.04,
                 wolf_reproduce=0.05, wolf_gain_from_food=20,
                 grass=False, sheep_gain_from_food=4):
        '''
        Create a new Wolf-Sheep model with the given parameters.

        Args:
            initial_sheep: Number of sheep to start with
            initial_wolves: Number of wolves to start with
            sheep_reproduce: Probability of each sheep reproducing each step
            wolf_reproduce: Probability of each wolf reproducing each step
            wolf_gain_from_food: Energy a wolf gains from eating a sheep
            grass: Whether to have the sheep eat grass for energy
            sheep_gain_from_food: Energy sheep gain from grass, if enabled.
        '''

        # Set parameters
        self.height = height
        self.width = width
        self.initial_sheep = initial_sheep
        self.initial_wolves = initial_wolves
        self.sheep_reproduce = sheep_reproduce
        self.wolf_reproduce = wolf_reproduce
        self.wolf_gain_from_food = wolf_gain_from_food
        self.grass = grass
        self.sheep_gain_from_food = sheep_gain_from_food

        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.height, self.width, torus=True)

        # Create sheep:
        for i in range(self.initial_sheep):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            sheep = Sheep(self.grid, x, y, True)
            self.grid.place_agent(sheep, (x, y))
            self.schedule.add(sheep)

        # Create wolves
        for i in range(self.initial_wolves):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            energy = random.randrange(2 * self.wolf_gain_from_food)
            wolf = Wolf(self.grid, x, y, True, energy)
            self.grid.place_agent(wolf, (x, y))
            self.schedule.add(wolf)

        self.running = True

    def step(self):
        self.schedule.step()
開發者ID:jackiekazil,項目名稱:mesa,代碼行數:72,代碼來源:WolfSheep.py

示例8: WolfSheep

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class WolfSheep(Model):
    '''
    Wolf-Sheep Predation Model
    '''

    height = 20
    width = 20

    initial_sheep = 100
    initial_wolves = 50

    sheep_reproduce = 0.04
    wolf_reproduce = 0.05

    wolf_gain_from_food = 20

    grass = False
    grass_regrowth_time = 30
    sheep_gain_from_food = 4

    verbose = False  # Print-monitoring

    description = 'A model for simulating wolf and sheep (predator-prey) ecosystem modelling.'

    def __init__(self, height=20, width=20,
                 initial_sheep=100, initial_wolves=50,
                 sheep_reproduce=0.04, wolf_reproduce=0.05,
                 wolf_gain_from_food=20,
                 grass=False, grass_regrowth_time=30, sheep_gain_from_food=4):
        '''
        Create a new Wolf-Sheep model with the given parameters.

        Args:
            initial_sheep: Number of sheep to start with
            initial_wolves: Number of wolves to start with
            sheep_reproduce: Probability of each sheep reproducing each step
            wolf_reproduce: Probability of each wolf reproducing each step
            wolf_gain_from_food: Energy a wolf gains from eating a sheep
            grass: Whether to have the sheep eat grass for energy
            grass_regrowth_time: How long it takes for a grass patch to regrow
                                 once it is eaten
            sheep_gain_from_food: Energy sheep gain from grass, if enabled.
        '''
        super().__init__()
        # Set parameters
        self.height = height
        self.width = width
        self.initial_sheep = initial_sheep
        self.initial_wolves = initial_wolves
        self.sheep_reproduce = sheep_reproduce
        self.wolf_reproduce = wolf_reproduce
        self.wolf_gain_from_food = wolf_gain_from_food
        self.grass = grass
        self.grass_regrowth_time = grass_regrowth_time
        self.sheep_gain_from_food = sheep_gain_from_food

        self.schedule = RandomActivationByBreed(self)
        self.grid = MultiGrid(self.height, self.width, torus=True)
        self.datacollector = DataCollector(
            {"Wolves": lambda m: m.schedule.get_breed_count(Wolf),
             "Sheep": lambda m: m.schedule.get_breed_count(Sheep)})

        # Create sheep:
        for i in range(self.initial_sheep):
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            energy = self.random.randrange(2 * self.sheep_gain_from_food)
            sheep = Sheep(self.next_id(), (x, y), self, True, energy)
            self.grid.place_agent(sheep, (x, y))
            self.schedule.add(sheep)

        # Create wolves
        for i in range(self.initial_wolves):
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            energy = self.random.randrange(2 * self.wolf_gain_from_food)
            wolf = Wolf(self.next_id(), (x, y), self, True, energy)
            self.grid.place_agent(wolf, (x, y))
            self.schedule.add(wolf)

        # Create grass patches
        if self.grass:
            for agent, x, y in self.grid.coord_iter():

                fully_grown = self.random.choice([True, False])

                if fully_grown:
                    countdown = self.grass_regrowth_time
                else:
                    countdown = self.random.randrange(self.grass_regrowth_time)

                patch = GrassPatch(self.next_id(), (x, y), self,
                                   fully_grown, countdown)
                self.grid.place_agent(patch, (x, y))
                self.schedule.add(patch)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
#.........這裏部分代碼省略.........
開發者ID:bangtree,項目名稱:mesa,代碼行數:103,代碼來源:model.py

示例9: Sugarscape2ConstantGrowback

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class Sugarscape2ConstantGrowback(Model):
    '''
    Sugarscape 2 Constant Growback
    '''

    verbose = True  # Print-monitoring

    def __init__(self, height=50, width=50,
                 initial_population=100):
        '''
        Create a new Constant Growback model with the given parameters.

        Args:
            initial_population: Number of population to start with
        '''

        # Set parameters
        self.height = height
        self.width = width
        self.initial_population = initial_population

        self.schedule = RandomActivationByBreed(self)
        self.grid = MultiGrid(self.height, self.width, torus=False)
        self.datacollector = DataCollector({"SsAgent": lambda m: m.schedule.get_breed_count(SsAgent), })

        # Create sugar
        import numpy as np
        sugar_distribution = np.genfromtxt("sugarscape/sugar-map.txt")
        for _, x, y in self.grid.coord_iter():
            max_sugar = sugar_distribution[x, y]
            sugar = Sugar((x, y), self, max_sugar)
            self.grid.place_agent(sugar, (x, y))
            self.schedule.add(sugar)

        # Create agent:
        for i in range(self.initial_population):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            sugar = random.randrange(6, 25)
            metabolism = random.randrange(2, 4)
            vision = random.randrange(1, 6)
            ssa = SsAgent((x, y), self, False, sugar, metabolism, vision)
            self.grid.place_agent(ssa, (x, y))
            self.schedule.add(ssa)

        self.running = True

    def step(self):
        self.schedule.step()
        self.datacollector.collect(self)
        if self.verbose:
            print([self.schedule.time,
                   self.schedule.get_breed_count(SsAgent)])

    def run_model(self, step_count=200):

        if self.verbose:
            print('Initial number Sugarscape Agent: ',
                  self.schedule.get_breed_count(SsAgent))

        for i in range(step_count):
            self.step()

        if self.verbose:
            print('')
            print('Final number Sugarscape Agent: ',
                  self.schedule.get_breed_count(SsAgent))
開發者ID:GeoESW,項目名稱:mesa,代碼行數:69,代碼來源:model.py

示例10: BankReserves

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class BankReserves(Model):
    """
    This model is a Mesa implementation of the Bank Reserves model from NetLogo.
    It is a highly abstracted, simplified model of an economy, with only one
    type of agent and a single bank representing all banks in an economy. People
    (represented by circles) move randomly within the grid. If two or more people
    are on the same grid location, there is a 50% chance that they will trade with
    each other. If they trade, there is an equal chance of giving the other agent
    $5 or $2. A positive trade balance will be deposited in the bank as savings.
    If trading results in a negative balance, the agent will try to withdraw from
    its savings to cover the balance. If it does not have enough savings to cover
    the negative balance, it will take out a loan from the bank to cover the
    difference. The bank is required to keep a certain percentage of deposits as
    reserves and the bank's ability to loan at any given time is a function of
    the amount of deposits, its reserves, and its current total outstanding loan
    amount.
    """

    # grid height
    grid_h = 20
    # grid width
    grid_w = 20

    """init parameters "init_people", "rich_threshold", and "reserve_percent"
       are all UserSettableParameters"""
    def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
                 reserve_percent=50,):
        self.height = height
        self.width = width
        self.init_people = init_people
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.width, self.height, torus=True)
        # rich_threshold is the amount of savings a person needs to be considered "rich"
        self.rich_threshold = rich_threshold
        self.reserve_percent = reserve_percent
        # see datacollector functions above
        self.datacollector = DataCollector(model_reporters={
                                           "Rich": get_num_rich_agents,
                                           "Poor": get_num_poor_agents,
                                           "Middle Class": get_num_mid_agents,
                                           "Savings": get_total_savings,
                                           "Wallets": get_total_wallets,
                                           "Money": get_total_money,
                                           "Loans": get_total_loans},
                                           agent_reporters={
                                           "Wealth": lambda x: x.wealth})

        # create a single bank for the model
        self.bank = Bank(1, self, self.reserve_percent)

        # create people for the model according to number of people set by user
        for i in range(self.init_people):
            # set x, y coords randomly within the grid
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
            # place the Person object on the grid at coordinates (x, y)
            self.grid.place_agent(p, (x, y))
            # add the Person object to the model schedule
            self.schedule.add(p)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        # tell all the agents in the model to run their step function
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self):
        for i in range(self.run_time):
            self.step()
開發者ID:bangtree,項目名稱:mesa,代碼行數:75,代碼來源:model.py

示例11: DDAModel

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class DDAModel(Model):
    """A simple DDA model"""

    _width = _WIDTH  # width and height of the world. These shouldn't be changed
    _height = _HEIGHT

    def __init__(self, N, iterations, bleedout_rate=np.random.normal(0.5, scale=0.1), mp=False):
        """
        Create a new instance of the DDA model.
        
        Parameters:
            N - the number of agents
            iterations - the number of iterations to run the model for
            blr - the bleedout rate (the probability that agents leave at the midpoint) (default normal distribution
            with mean=0.5 and sd=0.1)
            mp - whether to use multiprocess (agents call step() method at same time) (doesn't work!) (default False)
        """
        self.num_agents = N
        self._bleedout_rate = bleedout_rate
        self.iterations = iterations
        self.mp = mp

        # Locations of important parts of the environment. These shouldn't be changed
        self.graveyard = (0, 0)  # x,y locations of the graveyard
        self.loc_a = (1, 0)  # Location a (on left side of street)
        self.loc_b = (23, 0)  # Location b (on the right side)
        self.loc_mid = (12, 0)  # The midpoint

        # 'Cameras' that store the number of agents who pass them over the course of an hour. The historical counts
        # are saved by mesa using the DataCollector
        self._camera_a = 0  # Camera A
        self._camera_b = 0  # Camera B
        self._camera_m = 0  # The midpoint

        # Set up the scheduler. Note that this isn't actually used (see below re. agent's stepping)
        self.schedule = RandomActivation(self)  # Random order for calling agent's step methods

        # For multiprocess step method
        self.pool = Pool()

        # Create the environment
        self.grid = MultiGrid(DDAModel._width, DDAModel._height, False)

        # Define a variable that can be used to indicate whether the model has finished
        self.running = True

        # Create a distribution that tells us the number of agents to be added to the world at each
        self._agent_dist = DDAModel._make_agent_distribution(N)

        # Create all the agents
        for i in range(self.num_agents):
            a = DDAAgent(i, self)
            self.schedule.add(a)  # Add the agents to the schedule
            # All agents start as 'retired' in the graveyard
            a.state = AgentStates.RETIRED
            self.grid.place_agent(a, self.graveyard)  # All agents start in the graveyard

        print("Created {} agents".format(len(self.schedule.agents)))

        # Define a collector for model data
        self.datacollector = DataCollector(
            model_reporters={"Bleedout rate": lambda m: m.bleedout_rate,
                             "Number of active agents": lambda m: len(m.active_agents()),
                             "Camera A counts": lambda m: m.camera_a,
                             "Camera B counts": lambda m: m.camera_b,
                             "Camera M counts": lambda m: m.camera_m
                             },
            agent_reporters={"Location (x)": lambda agent: agent.pos[0],
                             "State": lambda agent: agent.state
                             }
        )

    def step(self):
        """Advance the model by one step."""
        print("Iteration {}".format(self.schedule.steps))

        self.datacollector.collect(self)  # Collect data about the model

        # See if the model has finished running.
        if self.schedule.steps >= self.iterations:
            self.running = False
            return

        # Things to do every hour.
        #  - 1 - reset the camera counters
        #  - 2 - activate some agents

        num_to_activate = -1
        s = self.schedule.steps  # Number of steps (for convenience)
        if s % 60 == 0:  # On the hour
            # Reset the cameras
            self._reset_cameras()
            # Calculate the number of agents to activate
            num_to_activate = int(self._agent_dist[int((s / 60) % 24)])
            print("\tActivating {} agents on hour {}".format(num_to_activate, s % 60))

        else:
            num_to_activate = 0
            
        assert num_to_activate >= 0, \
#.........這裏部分代碼省略.........
開發者ID:nickmalleson,項目名稱:surf,代碼行數:103,代碼來源:model.py

示例12: Trade

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]

#.........這裏部分代碼省略.........
    self.prices = prices

    e = {} # Embeddedness
    for i in range(ini_sellers):
      e[i] = 0.8*np.random.rand() + 0.2 # 0.2 - 1.0
    for i in range(self.num_w):
      e[i] = 0
    self.e = e

    '''Create buyers'''
    for i in range(self.ini_buyers):
      # It seems coincidence in the same cell is allowed
      x = np.random.randint(self.width)
      y = np.random.randint(self.height)

      α = d['alpha']
      trust = {}
      β = d['beta']*np.random.rand()
      for j in range(ini_sellers):
        trust[j] = np.random.rand()
      for j in range(self.num_w):
        trust[j] = self.trust_w
      γ = d['gamma']

      '''
      Network ties
        ties[j]=0 means 'no connection with bid=j buyer'
        ties[own bid] = 0 or 1 means nothing.
      '''
      ties = dict(zip(range(ini_buyers),[0]*ini_buyers))

      buyer = Buyer(i, self.grid, (x, y), True, α, trust, β, γ, ties)
      self.buyers[i] = buyer # Dictionary key is an integer
      self.grid.place_agent(buyer, (x, y))
      self.schedule.add(buyer)

    '''Create sellers'''
    for i in range(self.ini_sellers):
      x = np.random.randint(self.width)
      y = np.random.randint(self.height)

      cash = self.ini_cash
      costs = self.costs
      price = self.prices[i]
      w = False
      if i < self.num_w:
        w = True
      e = self.e[i]

      seller = Seller(i, self.grid, (x, y), True, cash, costs, price, w, e)
      self.sellers[i] = seller
      self.grid.place_agent(seller, (x, y))
      self.schedule.add(seller)

    self.running = True

  def step(self):
    '''Initialization'''
    self.cnt += 1
    self.sid_alive = [] # Excluding Wal-Mart

    for sid, seller in self.sellers.items():
      if seller.csa == False:
        '''Adjacent sales'''
        seller.sales = 0
        '''Customer list'''
開發者ID:ysaikai,項目名稱:LFABM,代碼行數:70,代碼來源:main.py

示例13: Movement

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class Movement(Model):

    def __init__(self, width = 0, height = 0, torus = False,
                 time = 0, step_in_year = 0,
                 number_of_families = family_setting, number_of_monkeys = 0, monkey_birth_count = 0,
                 monkey_death_count = 0, monkey_id_count = 0,
                 number_of_humans = 0, grid_type = human_setting, run_type = run_setting, human_id_count = 0):
        # change the # of families here for graph.py, but use server.py to change # of families in the movement model
        # torus = False means monkey movement can't 'wrap around' edges
        super().__init__()
        self.width = width
        self.height = height
        self.time = time  # time increases by 1/73 (decimal) each step
        self.step_in_year = step_in_year  # 1-73; each step is 5 days, and 5 * 73 = 365 days in a year
        self.number_of_families = number_of_families
        self.number_of_monkeys = number_of_monkeys  # total, not in each family
        self.monkey_birth_count = monkey_birth_count
        self.monkey_death_count = monkey_death_count
        self.monkey_id_count = monkey_id_count
        self.number_of_humans = number_of_humans
        self.grid_type = grid_type   # string 'with_humans' or 'without_humans'
        self.run_type = run_type  # string with 'normal_run' or 'first_run'
        self.human_id_count = human_id_count

        # width = self._readASCII(vegetation_file)[1] # width as listed at the beginning of the ASCII file
        # height = self._readASCII(vegetation_file)[2] # height as listed at the beginning of the ASCII file
        width = 85
        height = 100

        self.grid = MultiGrid(width, height, torus)  # creates environmental grid, sets schedule
        # MultiGrid is a Mesa function that sets up the grid; options are between SingleGrid and MultiGrid
        # MultiGrid allows you to put multiple layers on the grid

        self.schedule = RandomActivation(self)  # Mesa: Random vs. Staged Activation
        # similar to NetLogo's Ask Agents - determines order (or lack of) in which each agents act

        empty_masterdict = {'Outside_FNNR': [], 'Elevation_Out_of_Bound': [], 'Household': [], 'PES': [], 'Farm': [],
                            'Forest': [], 'Bamboo': [], 'Coniferous': [], 'Broadleaf': [], 'Mixed': [], 'Lichen': [],
                            'Deciduous': [], 'Shrublands': [], 'Clouds': [], 'Farmland': []}

        # generate land
        if self.run_type == 'first_run':
            gridlist = self._readASCII(vegetation_file)[0]  # list of all coordinate values; see readASCII function
            gridlist2 = self._readASCII(elevation_file)[0]  # list of all elevation values
            gridlist3 = self._readASCII(household_file)[0]  # list of all household coordinate values
            gridlist4 = self._readASCII(pes_file)[0]  # list of all PES coordinate values
            gridlist5 = self._readASCII(farm_file)[0]  # list of all farm coordinate values
            gridlist6 = self._readASCII(forest_file)[0]  # list of all managed forest coordinate values
            # The '_populate' function below builds the environmental grid.
            for x in [Elevation_Out_of_Bound]:
                self._populate(empty_masterdict, gridlist2, x, width, height)
            for x in [Household]:
                self._populate(empty_masterdict, gridlist3, x, width, height)
            for x in [PES]:
                self._populate(empty_masterdict, gridlist4, x, width, height)
            for x in [Farm]:
                self._populate(empty_masterdict, gridlist5, x, width, height)
            for x in [Forest]:
                self._populate(empty_masterdict, gridlist6, x, width, height)
            for x in [Bamboo, Coniferous, Broadleaf, Mixed, Lichen, Deciduous,
                      Shrublands, Clouds, Farmland, Outside_FNNR]:
                self._populate(empty_masterdict, gridlist, x, width, height)
            self.saveLoad(empty_masterdict, 'masterdict_veg', 'save')
            self.saveLoad(self.grid, 'grid_veg', 'save')
            self.saveLoad(self.schedule, 'schedule_veg', 'save')

        # Pickling below
        load_dict = {}  # placeholder for model parameters, leave this here even though it does nothing

        if self.grid_type == 'with_humans':
            empty_masterdict = self.saveLoad(load_dict, 'masterdict_veg', 'load')
            self.grid = self.saveLoad(self.grid, 'grid_veg', 'load')

        if self.grid_type == 'without_humans':
            empty_masterdict = self.saveLoad(load_dict, 'masterdict_without_humans', 'load')
            self.grid = self.saveLoad(load_dict, 'grid_without_humans', 'load')
        masterdict = empty_masterdict

        startinglist = masterdict['Broadleaf'] + masterdict['Mixed'] + masterdict['Deciduous']
        # Agents will start out in high-probability areas.
        for coordinate in masterdict['Elevation_Out_of_Bound'] + masterdict['Household'] + masterdict['PES'] \
                    + masterdict['Farm'] + masterdict['Forest']:
                if coordinate in startinglist:
                    startinglist.remove(coordinate)
        # Creation of resources (yellow dots in simulation)
        # These include Fuelwood, Herbs, Bamboo, etc., but right now resource type and frequency are not used
        if self.grid_type == 'with_humans':
            for line in _readCSV('hh_survey.csv')[1:]:  # see 'hh_survey.csv'
                hh_id_match = int(line[0])
                resource_name = line[1]  # frequency is monthly; currently not-used
                frequency = float(line[2]) / 6  # divided by 6 for 5-day frequency, as opposed to 30-day (1 month)
                y = int(line[5])
                x = int(line[6])
                resource = Resource(_readCSV('hh_survey.csv')[1:].index(line),
                                    self, (x, y), hh_id_match, resource_name, frequency)
                self.grid.place_agent(resource, (int(x), int(y)))
                resource_dict.setdefault(hh_id_match, []).append(resource)
                if self.run_type == 'first_run':
                    self.saveLoad(resource_dict, 'resource_dict', 'save')

#.........這裏部分代碼省略.........
開發者ID:jrmak,項目名稱:FNNR-ABM-Primate,代碼行數:103,代碼來源:model.py

示例14: SugarscapeModel

# 需要導入模塊: from mesa.space import MultiGrid [as 別名]
# 或者: from mesa.space.MultiGrid import place_agent [as 別名]
class SugarscapeModel(Model):
    def __init__(self, height=50, width=50, init_agents=500, max_metabolism=3, max_vision=10, max_init_sugar=5, min_age=30, max_age=60, init_poll=3, ex_ratio=2, ex_mod=1, poll_growth_rule=True, inheritance_rule=True):
        self.height = height
        self.width = width
        self.init_agents = init_agents
        self.init_poll = init_poll
        self.max_metabolism = max_metabolism
        self.max_vision = max_vision
        self.max_init_sugar = max_init_sugar
        self.min_age = min_age
        self.max_age = max_age
        self.ex_ratio = ex_ratio
        self.ex_mod = ex_mod

        self.replacement_rule = True
        self.pollution_rule = False
        self.diffusion_rule = False
        self.push_rule = False
        self.poll_growth_rule = poll_growth_rule
        self.expend_rule = True
        self.inheritance_rule = inheritance_rule

        self.map = self.import_map()
        self.grid = MultiGrid(height, width, torus=True)
        self.schedule = RandomActivationByType(self)
        self.datacollector = DataCollector({'Pollution': (lambda m: m.total_pollution),
                                            'Wealth': (lambda m: m.total_wealth/m.init_agents),
                                            'Agents': (lambda m: len(m.schedule.agents_by_type[ScapeAgent]))},
                                           {'Wealth': self.collect_wealth,
                                            'Metabolism': self.collect_metabolism,
                                            'Vision': self.collect_vision})

        self.total_wealth = 0
        self.total_pollution = 0

        self.populate_sugar()
        self.populate_agents()


    def step(self):
        ''' Step method run by the visualization module'''
        self.schedule.step([ScapeAgent, SugarPatch])
        self.datacollector.collect(self)

        # if self.schedule.time == 20:
        #     self.pollution_rule = True
        if self.schedule.time == 30:
            self.push_rule = True

        self.total_wealth = 0
        self.total_pollution = 0
        for agent in self.schedule.agents_by_type[ScapeAgent]:
            self.total_wealth += agent.wealth
        for patch in self.schedule.agents_by_type[SugarPatch]:
            self.total_pollution += patch.pollution

    def import_map(self):
        ''' Imports a text file into an array to be used when generating and
            placing the sugar Agents into the grid
        '''

        f = open('Maps/sugar_map.txt', 'r')
        map_list = []
        for line in f:
            num_list = line.split(' ')
            for num in num_list:
                map_list.append(int(num[0]))

        return map_list

    def new_agent(self, uid, inheritance):
        ''' Place a new agent on the sugarscape in order to replace a death'''
        free = False
        while not free:
            location = random.choice([cell for cell in self.grid.coord_iter()])
            if len(location[0]) == 1:
                free = True

        pos = (location[1], location[2])
        patch = self.grid.get_cell_list_contents([pos])[0]

        if self.inheritance_rule:
            if inheritance == 'rand':
                wealth = random.randint(1, self.max_init_sugar)
            else:
                wealth = inheritance
        else:
            wealth = random.randint(1, self.max_init_sugar)

        agent = ScapeAgent(uid, pos, wealth, random.randint(1,self.max_metabolism), random.randint(1,self.max_vision), random.randint(self.min_age, self.max_age), patch, self.ex_ratio, self.ex_mod)

        self.grid.place_agent(agent, agent.pos)
        self.schedule.add(agent)

    def populate_agents(self):
        ''' Place ScapeAgent's in random unoccupied locations on the grid with randomomized
            sets of parameters
        '''

        cells = [(cell[1], cell[2]) for cell in self.grid.coord_iter()]
#.........這裏部分代碼省略.........
開發者ID:nshlapo,項目名稱:ComplexSocialModeling,代碼行數:103,代碼來源:Model.py


注:本文中的mesa.space.MultiGrid.place_agent方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。