當前位置: 首頁>>代碼示例>>Python>>正文


Python space.MultiGrid類代碼示例

本文整理匯總了Python中mesa.space.MultiGrid的典型用法代碼示例。如果您正苦於以下問題:Python MultiGrid類的具體用法?Python MultiGrid怎麽用?Python MultiGrid使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了MultiGrid類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: WalkerWorld

class WalkerWorld(Model):
    '''
    Random walker world.
    '''
    height = 10
    width = 10

    def __init__(self, height, width, agent_count):
        '''
        Create a new WalkerWorld.

        Args:
            height, width: World size.
            agent_count: How many agents to create.
        '''
        self.height = height
        self.width = width
        self.grid = MultiGrid(self.height, self.width, torus=True)
        self.agent_count = agent_count

        self.schedule = RandomActivation(self)
        # Create agents
        for i in range(self.agent_count):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            a = WalkerAgent((x, y), self, True)
            self.schedule.add(a)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.schedule.step()
開發者ID:GeoESW,項目名稱:mesa,代碼行數:31,代碼來源:test_random_walk.py

示例2: Money_Model

class Money_Model(Model):
    def __init__(self, N, width=50, height=50, torus=True):
        self.num_agents = N
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(height, width, torus)
        self.create_agents()
        self.dc = DataCollector({"Gini": lambda m: m.compute_gini()},
                               {"Wealth": lambda a: a.wealth})
        self.running = True

    def create_agents(self):
        for i in range(self.num_agents):
            a = Money_Agent(i)
            self.schedule.add(a)
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.dc.collect(self)
        self.schedule.step()
        
    def run_model(self, steps):
        for i in range(steps):
            self.step()
    
    def compute_gini(self):
        agent_wealths = [agent.wealth for agent in self.schedule.agents]
        x = sorted(agent_wealths)
        N = self.num_agents
        B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
        return (1 + (1/N) - 2*B)
開發者ID:dmasad,項目名稱:Scientific-Python-for-CSS-605,代碼行數:32,代碼來源:money_model.py

示例3: MoneyModel

class MoneyModel(Model):
    """A simple model of an economy where agents exchange currency at random.

    All the agents begin with one unit of currency, and each time step can give
    a unit of currency to another agent. Note how, over time, this produces a
    highly skewed distribution of wealth.
    """

    def __init__(self, N, width, height):
        self.num_agents = N
        self.running = True
        self.grid = MultiGrid(height, width, True)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Gini": compute_gini},
            agent_reporters={"Wealth": lambda a: a.wealth}
        )
        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
            # Add the agent to a random grid cell
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()

    def run_model(self, n):
        for i in range(n):
            self.step()
開發者ID:GeoESW,項目名稱:mesa,代碼行數:33,代碼來源:model.py

示例4: MoneyModel

class MoneyModel(Model):
    """A model with some number of agents."""
    def __init__(self, N, width, height):
        self.num_agents = N
        self.running = True
        self.grid = MultiGrid(height, width, True)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(model_reporters={"Gini": compute_gini},
                agent_reporters={"Wealth": lambda a: a.wealth})
        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i)
            self.schedule.add(a)
            # Add the agent to a random grid cell
            x = random.randrange(self.grid.width)
            y = random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()
    
    def run_model(self, n):
        for i in range(n):
            self.step()
開發者ID:Eleonore9,項目名稱:mesa,代碼行數:25,代碼來源:MoneyModel.py

示例5: Charts

class Charts(Model):

    # grid height
    grid_h = 20
    # grid width
    grid_w = 20

    """init parameters "init_people", "rich_threshold", and "reserve_percent"
       are all UserSettableParameters"""
    def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
                 reserve_percent=50,):
        self.height = height
        self.width = width
        self.init_people = init_people
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.width, self.height, torus=True)
        # rich_threshold is the amount of savings a person needs to be considered "rich"
        self.rich_threshold = rich_threshold
        self.reserve_percent = reserve_percent
        # see datacollector functions above
        self.datacollector = DataCollector(model_reporters={
                                           "Rich": get_num_rich_agents,
                                           "Poor": get_num_poor_agents,
                                           "Middle Class": get_num_mid_agents,
                                           "Savings": get_total_savings,
                                           "Wallets": get_total_wallets,
                                           "Money": get_total_money,
                                           "Loans": get_total_loans},
                                           agent_reporters={
                                           "Wealth": lambda x: x.wealth})

        # create a single bank for the model
        self.bank = Bank(1, self, self.reserve_percent)

        # create people for the model according to number of people set by user
        for i in range(self.init_people):
            # set x, y coords randomly within the grid
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
            # place the Person object on the grid at coordinates (x, y)
            self.grid.place_agent(p, (x, y))
            # add the Person object to the model schedule
            self.schedule.add(p)

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        # tell all the agents in the model to run their step function
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self):
        for i in range(self.run_time):
            self.step()
開發者ID:projectmesa,項目名稱:mesa,代碼行數:57,代碼來源:model.py

示例6: TestMultiGrid

class TestMultiGrid(unittest.TestCase):
    '''
    Testing a toroidal MultiGrid
    '''

    torus = True

    def setUp(self):
        '''
        Create a test non-toroidal grid and populate it with Mock Agents
        '''
        width = 3
        height = 5
        self.grid = MultiGrid(width, height, self.torus)
        self.agents = []
        counter = 0
        for x in range(width):
            for y in range(height):
                for i in range(TEST_MULTIGRID[x][y]):
                    counter += 1
                    # Create and place the mock agent
                    a = MockAgent(counter, None)
                    self.agents.append(a)
                    self.grid.place_agent(a, (x, y))

    def test_agent_positions(self):
        '''
        Ensure that the agents are all placed properly on the MultiGrid.
        '''
        for agent in self.agents:
            x, y = agent.pos
            assert agent in self.grid[x][y]

    def test_neighbors(self):
        '''
        Test the toroidal MultiGrid neighborhood methods.
        '''

        neighborhood = self.grid.get_neighborhood((1, 1), moore=True)
        assert len(neighborhood) == 8

        neighborhood = self.grid.get_neighborhood((1, 4), moore=True)
        assert len(neighborhood) == 8

        neighborhood = self.grid.get_neighborhood((0, 0), moore=False)
        assert len(neighborhood) == 4

        neighbors = self.grid.get_neighbors((1, 4), moore=False)
        assert len(neighbors) == 0

        neighbors = self.grid.get_neighbors((1, 4), moore=True)
        assert len(neighbors) == 5

        neighbors = self.grid.get_neighbors((1, 1), moore=False,
                                            include_center=True)
        assert len(neighbors) == 7

        neighbors = self.grid.get_neighbors((1, 3), moore=False, radius=2)
        assert len(neighbors) == 11
開發者ID:GeoESW,項目名稱:mesa,代碼行數:59,代碼來源:test_grid.py

示例7: __init__

 def __init__(self, N, width=50, height=50, torus=True):
     self.num_agents = N
     self.schedule = RandomActivation(self)
     self.grid = MultiGrid(height, width, torus)
     self.create_agents()
     self.dc = DataCollector({"Gini": lambda m: m.compute_gini()},
                            {"Wealth": lambda a: a.wealth})
     self.running = True
開發者ID:dmasad,項目名稱:Scientific-Python-for-CSS-605,代碼行數:8,代碼來源:money_model.py

示例8: __init__

    def __init__(self, height=20, width=20,
                 initial_sheep=100, initial_wolves=50, sheep_reproduce=0.04,
                 wolf_reproduce=0.05, wolf_gain_from_food=20,
                 grass=False, sheep_gain_from_food=4):
        '''
        Create a new Wolf-Sheep model with the given parameters.

        Args:
            initial_sheep: Number of sheep to start with
            initial_wolves: Number of wolves to start with
            sheep_reproduce: Probability of each sheep reproducing each step
            wolf_reproduce: Probability of each wolf reproducing each step
            wolf_gain_from_food: Energy a wolf gains from eating a sheep
            grass: Whether to have the sheep eat grass for energy
            sheep_gain_from_food: Energy sheep gain from grass, if enabled.
        '''

        # Set parameters
        self.height = height
        self.width = width
        self.initial_sheep = initial_sheep
        self.initial_wolves = initial_wolves
        self.sheep_reproduce = sheep_reproduce
        self.wolf_reproduce = wolf_reproduce
        self.wolf_gain_from_food = wolf_gain_from_food
        self.grass = grass
        self.sheep_gain_from_food = sheep_gain_from_food

        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.height, self.width, torus=True)

        # Create sheep:
        for i in range(self.initial_sheep):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            sheep = Sheep(self.grid, x, y, True)
            self.grid.place_agent(sheep, (x, y))
            self.schedule.add(sheep)

        # Create wolves
        for i in range(self.initial_wolves):
            x = random.randrange(self.width)
            y = random.randrange(self.height)
            energy = random.randrange(2 * self.wolf_gain_from_food)
            wolf = Wolf(self.grid, x, y, True, energy)
            self.grid.place_agent(wolf, (x, y))
            self.schedule.add(wolf)

        self.running = True
開發者ID:jackiekazil,項目名稱:mesa,代碼行數:49,代碼來源:WolfSheep.py

示例9: setUp

 def setUp(self):
     '''
     Create a test non-toroidal grid and populate it with Mock Agents
     '''
     self.grid = MultiGrid(3, 5, self.torus)
     self.agents = []
     counter = 0
     for y in range(3):
         for x in range(5):
             for i in range(TEST_MULTIGRID[y][x]):
                 counter += 1
                 # Create and place the mock agent
                 a = MockAgent(counter, None)
                 self.agents.append(a)
                 self.grid.place_agent(a, (x, y))
開發者ID:CHEN-JIANGHANG,項目名稱:mesa,代碼行數:15,代碼來源:test_grid.py

示例10: setUp

 def setUp(self):
     '''
     Create a test non-toroidal grid and populate it with Mock Agents
     '''
     width = 3
     height = 5
     self.grid = MultiGrid(width, height, self.torus)
     self.agents = []
     counter = 0
     for x in range(width):
         for y in range(height):
             for i in range(TEST_MULTIGRID[x][y]):
                 counter += 1
                 # Create and place the mock agent
                 a = MockAgent(counter, None)
                 self.agents.append(a)
                 self.grid.place_agent(a, (x, y))
開發者ID:GeoESW,項目名稱:mesa,代碼行數:17,代碼來源:test_grid.py

示例11: __init__

 def __init__(self, N, width, height):
     self.num_agents = N
     self.running = True
     self.grid = MultiGrid(height, width, True)
     self.schedule = RandomActivation(self)
     self.datacollector = DataCollector(
         model_reporters={"Gini": compute_gini},
         agent_reporters={"Wealth": lambda a: a.wealth}
     )
     # Create agents
     for i in range(self.num_agents):
         a = MoneyAgent(i, self)
         self.schedule.add(a)
         # Add the agent to a random grid cell
         x = random.randrange(self.grid.width)
         y = random.randrange(self.grid.height)
         self.grid.place_agent(a, (x, y))
開發者ID:csmaxwell,項目名稱:mesa,代碼行數:17,代碼來源:money_model.py

示例12: __init__

    def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
                 reserve_percent=50,):
        self.uid = next(self.id_gen)
        self.height = height
        self.width = width
        self.init_people = init_people
        self.schedule = RandomActivation(self)
        self.grid = MultiGrid(self.width, self.height, torus=True)
        # rich_threshold is the amount of savings a person needs to be considered "rich"
        self.rich_threshold = rich_threshold
        self.reserve_percent = reserve_percent
        # see datacollector functions above
        self.datacollector = DataCollector(model_reporters={
                                           "Rich": get_num_rich_agents,
                                           "Poor": get_num_poor_agents,
                                           "Middle Class": get_num_mid_agents,
                                           "Savings": get_total_savings,
                                           "Wallets": get_total_wallets,
                                           "Money": get_total_money,
                                           "Loans": get_total_loans,
                                           "Model Params": track_params,
                                           "Run": track_run},
                                           agent_reporters={
                                           "Wealth": lambda x: x.wealth})

        # create a single bank for the model
        self.bank = Bank(1, self, self.reserve_percent)

        # create people for the model according to number of people set by user
        for i in range(self.init_people):
            # set x coordinate as a random number within the width of the grid
            x = self.random.randrange(self.width)
            # set y coordinate as a random number within the height of the grid
            y = self.random.randrange(self.height)
            p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
            # place the Person object on the grid at coordinates (x, y)
            self.grid.place_agent(p, (x, y))
            # add the Person object to the model schedule
            self.schedule.add(p)

        self.running = True
開發者ID:bangtree,項目名稱:mesa,代碼行數:41,代碼來源:batch_run.py

示例13: __init__

    def __init__(self, height=50, width=50,
                 initial_population=100):
        '''
        Create a new Constant Growback model with the given parameters.

        Args:
            initial_population: Number of population to start with
        '''

        # Set parameters
        self.height = height
        self.width = width
        self.initial_population = initial_population

        self.schedule = RandomActivationByBreed(self)
        self.grid = MultiGrid(self.height, self.width, torus=False)
        self.datacollector = DataCollector({"SsAgent": lambda m: m.schedule.get_breed_count(SsAgent), })

        # Create sugar
        import numpy as np
        sugar_distribution = np.genfromtxt("sugarscape_cg/sugar-map.txt")
        for _, x, y in self.grid.coord_iter():
            max_sugar = sugar_distribution[x, y]
            sugar = Sugar((x, y), self, max_sugar)
            self.grid.place_agent(sugar, (x, y))
            self.schedule.add(sugar)

        # Create agent:
        for i in range(self.initial_population):
            x = self.random.randrange(self.width)
            y = self.random.randrange(self.height)
            sugar = self.random.randrange(6, 25)
            metabolism = self.random.randrange(2, 4)
            vision = self.random.randrange(1, 6)
            ssa = SsAgent((x, y), self, False, sugar, metabolism, vision)
            self.grid.place_agent(ssa, (x, y))
            self.schedule.add(ssa)

        self.running = True
        self.datacollector.collect(self)
開發者ID:bangtree,項目名稱:mesa,代碼行數:40,代碼來源:model.py

示例14: __init__

    def __init__(self, height=50, width=50, init_agents=500, max_metabolism=3, max_vision=10, max_init_sugar=5, min_age=30, max_age=60, init_poll=3, ex_ratio=2, ex_mod=1, poll_growth_rule=True, inheritance_rule=True):
        self.height = height
        self.width = width
        self.init_agents = init_agents
        self.init_poll = init_poll
        self.max_metabolism = max_metabolism
        self.max_vision = max_vision
        self.max_init_sugar = max_init_sugar
        self.min_age = min_age
        self.max_age = max_age
        self.ex_ratio = ex_ratio
        self.ex_mod = ex_mod

        self.replacement_rule = True
        self.pollution_rule = False
        self.diffusion_rule = False
        self.push_rule = False
        self.poll_growth_rule = poll_growth_rule
        self.expend_rule = True
        self.inheritance_rule = inheritance_rule

        self.map = self.import_map()
        self.grid = MultiGrid(height, width, torus=True)
        self.schedule = RandomActivationByType(self)
        self.datacollector = DataCollector({'Pollution': (lambda m: m.total_pollution),
                                            'Wealth': (lambda m: m.total_wealth/m.init_agents),
                                            'Agents': (lambda m: len(m.schedule.agents_by_type[ScapeAgent]))},
                                           {'Wealth': self.collect_wealth,
                                            'Metabolism': self.collect_metabolism,
                                            'Vision': self.collect_vision})

        self.total_wealth = 0
        self.total_pollution = 0

        self.populate_sugar()
        self.populate_agents()
開發者ID:nshlapo,項目名稱:ComplexSocialModeling,代碼行數:36,代碼來源:Model.py

示例15: __init__

    def __init__(self, width = 0, height = 0, torus = False,
                 time = 0, step_in_year = 0,
                 number_of_families = family_setting, number_of_monkeys = 0, monkey_birth_count = 0,
                 monkey_death_count = 0, monkey_id_count = 0,
                 number_of_humans = 0, grid_type = human_setting, run_type = run_setting, human_id_count = 0):
        # change the # of families here for graph.py, but use server.py to change # of families in the movement model
        # torus = False means monkey movement can't 'wrap around' edges
        super().__init__()
        self.width = width
        self.height = height
        self.time = time  # time increases by 1/73 (decimal) each step
        self.step_in_year = step_in_year  # 1-73; each step is 5 days, and 5 * 73 = 365 days in a year
        self.number_of_families = number_of_families
        self.number_of_monkeys = number_of_monkeys  # total, not in each family
        self.monkey_birth_count = monkey_birth_count
        self.monkey_death_count = monkey_death_count
        self.monkey_id_count = monkey_id_count
        self.number_of_humans = number_of_humans
        self.grid_type = grid_type   # string 'with_humans' or 'without_humans'
        self.run_type = run_type  # string with 'normal_run' or 'first_run'
        self.human_id_count = human_id_count

        # width = self._readASCII(vegetation_file)[1] # width as listed at the beginning of the ASCII file
        # height = self._readASCII(vegetation_file)[2] # height as listed at the beginning of the ASCII file
        width = 85
        height = 100

        self.grid = MultiGrid(width, height, torus)  # creates environmental grid, sets schedule
        # MultiGrid is a Mesa function that sets up the grid; options are between SingleGrid and MultiGrid
        # MultiGrid allows you to put multiple layers on the grid

        self.schedule = RandomActivation(self)  # Mesa: Random vs. Staged Activation
        # similar to NetLogo's Ask Agents - determines order (or lack of) in which each agents act

        empty_masterdict = {'Outside_FNNR': [], 'Elevation_Out_of_Bound': [], 'Household': [], 'PES': [], 'Farm': [],
                            'Forest': [], 'Bamboo': [], 'Coniferous': [], 'Broadleaf': [], 'Mixed': [], 'Lichen': [],
                            'Deciduous': [], 'Shrublands': [], 'Clouds': [], 'Farmland': []}

        # generate land
        if self.run_type == 'first_run':
            gridlist = self._readASCII(vegetation_file)[0]  # list of all coordinate values; see readASCII function
            gridlist2 = self._readASCII(elevation_file)[0]  # list of all elevation values
            gridlist3 = self._readASCII(household_file)[0]  # list of all household coordinate values
            gridlist4 = self._readASCII(pes_file)[0]  # list of all PES coordinate values
            gridlist5 = self._readASCII(farm_file)[0]  # list of all farm coordinate values
            gridlist6 = self._readASCII(forest_file)[0]  # list of all managed forest coordinate values
            # The '_populate' function below builds the environmental grid.
            for x in [Elevation_Out_of_Bound]:
                self._populate(empty_masterdict, gridlist2, x, width, height)
            for x in [Household]:
                self._populate(empty_masterdict, gridlist3, x, width, height)
            for x in [PES]:
                self._populate(empty_masterdict, gridlist4, x, width, height)
            for x in [Farm]:
                self._populate(empty_masterdict, gridlist5, x, width, height)
            for x in [Forest]:
                self._populate(empty_masterdict, gridlist6, x, width, height)
            for x in [Bamboo, Coniferous, Broadleaf, Mixed, Lichen, Deciduous,
                      Shrublands, Clouds, Farmland, Outside_FNNR]:
                self._populate(empty_masterdict, gridlist, x, width, height)
            self.saveLoad(empty_masterdict, 'masterdict_veg', 'save')
            self.saveLoad(self.grid, 'grid_veg', 'save')
            self.saveLoad(self.schedule, 'schedule_veg', 'save')

        # Pickling below
        load_dict = {}  # placeholder for model parameters, leave this here even though it does nothing

        if self.grid_type == 'with_humans':
            empty_masterdict = self.saveLoad(load_dict, 'masterdict_veg', 'load')
            self.grid = self.saveLoad(self.grid, 'grid_veg', 'load')

        if self.grid_type == 'without_humans':
            empty_masterdict = self.saveLoad(load_dict, 'masterdict_without_humans', 'load')
            self.grid = self.saveLoad(load_dict, 'grid_without_humans', 'load')
        masterdict = empty_masterdict

        startinglist = masterdict['Broadleaf'] + masterdict['Mixed'] + masterdict['Deciduous']
        # Agents will start out in high-probability areas.
        for coordinate in masterdict['Elevation_Out_of_Bound'] + masterdict['Household'] + masterdict['PES'] \
                    + masterdict['Farm'] + masterdict['Forest']:
                if coordinate in startinglist:
                    startinglist.remove(coordinate)
        # Creation of resources (yellow dots in simulation)
        # These include Fuelwood, Herbs, Bamboo, etc., but right now resource type and frequency are not used
        if self.grid_type == 'with_humans':
            for line in _readCSV('hh_survey.csv')[1:]:  # see 'hh_survey.csv'
                hh_id_match = int(line[0])
                resource_name = line[1]  # frequency is monthly; currently not-used
                frequency = float(line[2]) / 6  # divided by 6 for 5-day frequency, as opposed to 30-day (1 month)
                y = int(line[5])
                x = int(line[6])
                resource = Resource(_readCSV('hh_survey.csv')[1:].index(line),
                                    self, (x, y), hh_id_match, resource_name, frequency)
                self.grid.place_agent(resource, (int(x), int(y)))
                resource_dict.setdefault(hh_id_match, []).append(resource)
                if self.run_type == 'first_run':
                    self.saveLoad(resource_dict, 'resource_dict', 'save')

        # Creation of land parcels
        land_parcel_count = 0
#.........這裏部分代碼省略.........
開發者ID:jrmak,項目名稱:FNNR-ABM-Primate,代碼行數:101,代碼來源:model.py


注:本文中的mesa.space.MultiGrid類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。