本文整理匯總了Python中mesa.space.MultiGrid類的典型用法代碼示例。如果您正苦於以下問題:Python MultiGrid類的具體用法?Python MultiGrid怎麽用?Python MultiGrid使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了MultiGrid類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: WalkerWorld
class WalkerWorld(Model):
'''
Random walker world.
'''
height = 10
width = 10
def __init__(self, height, width, agent_count):
'''
Create a new WalkerWorld.
Args:
height, width: World size.
agent_count: How many agents to create.
'''
self.height = height
self.width = width
self.grid = MultiGrid(self.height, self.width, torus=True)
self.agent_count = agent_count
self.schedule = RandomActivation(self)
# Create agents
for i in range(self.agent_count):
x = random.randrange(self.width)
y = random.randrange(self.height)
a = WalkerAgent((x, y), self, True)
self.schedule.add(a)
self.grid.place_agent(a, (x, y))
def step(self):
self.schedule.step()
示例2: Money_Model
class Money_Model(Model):
def __init__(self, N, width=50, height=50, torus=True):
self.num_agents = N
self.schedule = RandomActivation(self)
self.grid = MultiGrid(height, width, torus)
self.create_agents()
self.dc = DataCollector({"Gini": lambda m: m.compute_gini()},
{"Wealth": lambda a: a.wealth})
self.running = True
def create_agents(self):
for i in range(self.num_agents):
a = Money_Agent(i)
self.schedule.add(a)
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
def step(self):
self.dc.collect(self)
self.schedule.step()
def run_model(self, steps):
for i in range(steps):
self.step()
def compute_gini(self):
agent_wealths = [agent.wealth for agent in self.schedule.agents]
x = sorted(agent_wealths)
N = self.num_agents
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
示例3: MoneyModel
class MoneyModel(Model):
"""A simple model of an economy where agents exchange currency at random.
All the agents begin with one unit of currency, and each time step can give
a unit of currency to another agent. Note how, over time, this produces a
highly skewed distribution of wealth.
"""
def __init__(self, N, width, height):
self.num_agents = N
self.running = True
self.grid = MultiGrid(height, width, True)
self.schedule = RandomActivation(self)
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": lambda a: a.wealth}
)
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
def step(self):
self.datacollector.collect(self)
self.schedule.step()
def run_model(self, n):
for i in range(n):
self.step()
示例4: MoneyModel
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.running = True
self.grid = MultiGrid(height, width, True)
self.schedule = RandomActivation(self)
self.datacollector = DataCollector(model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": lambda a: a.wealth})
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i)
self.schedule.add(a)
# Add the agent to a random grid cell
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
def step(self):
self.datacollector.collect(self)
self.schedule.step()
def run_model(self, n):
for i in range(n):
self.step()
示例5: Charts
class Charts(Model):
# grid height
grid_h = 20
# grid width
grid_w = 20
"""init parameters "init_people", "rich_threshold", and "reserve_percent"
are all UserSettableParameters"""
def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
reserve_percent=50,):
self.height = height
self.width = width
self.init_people = init_people
self.schedule = RandomActivation(self)
self.grid = MultiGrid(self.width, self.height, torus=True)
# rich_threshold is the amount of savings a person needs to be considered "rich"
self.rich_threshold = rich_threshold
self.reserve_percent = reserve_percent
# see datacollector functions above
self.datacollector = DataCollector(model_reporters={
"Rich": get_num_rich_agents,
"Poor": get_num_poor_agents,
"Middle Class": get_num_mid_agents,
"Savings": get_total_savings,
"Wallets": get_total_wallets,
"Money": get_total_money,
"Loans": get_total_loans},
agent_reporters={
"Wealth": lambda x: x.wealth})
# create a single bank for the model
self.bank = Bank(1, self, self.reserve_percent)
# create people for the model according to number of people set by user
for i in range(self.init_people):
# set x, y coords randomly within the grid
x = self.random.randrange(self.width)
y = self.random.randrange(self.height)
p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
# place the Person object on the grid at coordinates (x, y)
self.grid.place_agent(p, (x, y))
# add the Person object to the model schedule
self.schedule.add(p)
self.running = True
self.datacollector.collect(self)
def step(self):
# tell all the agents in the model to run their step function
self.schedule.step()
# collect data
self.datacollector.collect(self)
def run_model(self):
for i in range(self.run_time):
self.step()
示例6: TestMultiGrid
class TestMultiGrid(unittest.TestCase):
'''
Testing a toroidal MultiGrid
'''
torus = True
def setUp(self):
'''
Create a test non-toroidal grid and populate it with Mock Agents
'''
width = 3
height = 5
self.grid = MultiGrid(width, height, self.torus)
self.agents = []
counter = 0
for x in range(width):
for y in range(height):
for i in range(TEST_MULTIGRID[x][y]):
counter += 1
# Create and place the mock agent
a = MockAgent(counter, None)
self.agents.append(a)
self.grid.place_agent(a, (x, y))
def test_agent_positions(self):
'''
Ensure that the agents are all placed properly on the MultiGrid.
'''
for agent in self.agents:
x, y = agent.pos
assert agent in self.grid[x][y]
def test_neighbors(self):
'''
Test the toroidal MultiGrid neighborhood methods.
'''
neighborhood = self.grid.get_neighborhood((1, 1), moore=True)
assert len(neighborhood) == 8
neighborhood = self.grid.get_neighborhood((1, 4), moore=True)
assert len(neighborhood) == 8
neighborhood = self.grid.get_neighborhood((0, 0), moore=False)
assert len(neighborhood) == 4
neighbors = self.grid.get_neighbors((1, 4), moore=False)
assert len(neighbors) == 0
neighbors = self.grid.get_neighbors((1, 4), moore=True)
assert len(neighbors) == 5
neighbors = self.grid.get_neighbors((1, 1), moore=False,
include_center=True)
assert len(neighbors) == 7
neighbors = self.grid.get_neighbors((1, 3), moore=False, radius=2)
assert len(neighbors) == 11
示例7: __init__
def __init__(self, N, width=50, height=50, torus=True):
self.num_agents = N
self.schedule = RandomActivation(self)
self.grid = MultiGrid(height, width, torus)
self.create_agents()
self.dc = DataCollector({"Gini": lambda m: m.compute_gini()},
{"Wealth": lambda a: a.wealth})
self.running = True
示例8: __init__
def __init__(self, height=20, width=20,
initial_sheep=100, initial_wolves=50, sheep_reproduce=0.04,
wolf_reproduce=0.05, wolf_gain_from_food=20,
grass=False, sheep_gain_from_food=4):
'''
Create a new Wolf-Sheep model with the given parameters.
Args:
initial_sheep: Number of sheep to start with
initial_wolves: Number of wolves to start with
sheep_reproduce: Probability of each sheep reproducing each step
wolf_reproduce: Probability of each wolf reproducing each step
wolf_gain_from_food: Energy a wolf gains from eating a sheep
grass: Whether to have the sheep eat grass for energy
sheep_gain_from_food: Energy sheep gain from grass, if enabled.
'''
# Set parameters
self.height = height
self.width = width
self.initial_sheep = initial_sheep
self.initial_wolves = initial_wolves
self.sheep_reproduce = sheep_reproduce
self.wolf_reproduce = wolf_reproduce
self.wolf_gain_from_food = wolf_gain_from_food
self.grass = grass
self.sheep_gain_from_food = sheep_gain_from_food
self.schedule = RandomActivation(self)
self.grid = MultiGrid(self.height, self.width, torus=True)
# Create sheep:
for i in range(self.initial_sheep):
x = random.randrange(self.width)
y = random.randrange(self.height)
sheep = Sheep(self.grid, x, y, True)
self.grid.place_agent(sheep, (x, y))
self.schedule.add(sheep)
# Create wolves
for i in range(self.initial_wolves):
x = random.randrange(self.width)
y = random.randrange(self.height)
energy = random.randrange(2 * self.wolf_gain_from_food)
wolf = Wolf(self.grid, x, y, True, energy)
self.grid.place_agent(wolf, (x, y))
self.schedule.add(wolf)
self.running = True
示例9: setUp
def setUp(self):
'''
Create a test non-toroidal grid and populate it with Mock Agents
'''
self.grid = MultiGrid(3, 5, self.torus)
self.agents = []
counter = 0
for y in range(3):
for x in range(5):
for i in range(TEST_MULTIGRID[y][x]):
counter += 1
# Create and place the mock agent
a = MockAgent(counter, None)
self.agents.append(a)
self.grid.place_agent(a, (x, y))
示例10: setUp
def setUp(self):
'''
Create a test non-toroidal grid and populate it with Mock Agents
'''
width = 3
height = 5
self.grid = MultiGrid(width, height, self.torus)
self.agents = []
counter = 0
for x in range(width):
for y in range(height):
for i in range(TEST_MULTIGRID[x][y]):
counter += 1
# Create and place the mock agent
a = MockAgent(counter, None)
self.agents.append(a)
self.grid.place_agent(a, (x, y))
示例11: __init__
def __init__(self, N, width, height):
self.num_agents = N
self.running = True
self.grid = MultiGrid(height, width, True)
self.schedule = RandomActivation(self)
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": lambda a: a.wealth}
)
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
示例12: __init__
def __init__(self, height=grid_h, width=grid_w, init_people=2, rich_threshold=10,
reserve_percent=50,):
self.uid = next(self.id_gen)
self.height = height
self.width = width
self.init_people = init_people
self.schedule = RandomActivation(self)
self.grid = MultiGrid(self.width, self.height, torus=True)
# rich_threshold is the amount of savings a person needs to be considered "rich"
self.rich_threshold = rich_threshold
self.reserve_percent = reserve_percent
# see datacollector functions above
self.datacollector = DataCollector(model_reporters={
"Rich": get_num_rich_agents,
"Poor": get_num_poor_agents,
"Middle Class": get_num_mid_agents,
"Savings": get_total_savings,
"Wallets": get_total_wallets,
"Money": get_total_money,
"Loans": get_total_loans,
"Model Params": track_params,
"Run": track_run},
agent_reporters={
"Wealth": lambda x: x.wealth})
# create a single bank for the model
self.bank = Bank(1, self, self.reserve_percent)
# create people for the model according to number of people set by user
for i in range(self.init_people):
# set x coordinate as a random number within the width of the grid
x = self.random.randrange(self.width)
# set y coordinate as a random number within the height of the grid
y = self.random.randrange(self.height)
p = Person(i, (x, y), self, True, self.bank, self.rich_threshold)
# place the Person object on the grid at coordinates (x, y)
self.grid.place_agent(p, (x, y))
# add the Person object to the model schedule
self.schedule.add(p)
self.running = True
示例13: __init__
def __init__(self, height=50, width=50,
initial_population=100):
'''
Create a new Constant Growback model with the given parameters.
Args:
initial_population: Number of population to start with
'''
# Set parameters
self.height = height
self.width = width
self.initial_population = initial_population
self.schedule = RandomActivationByBreed(self)
self.grid = MultiGrid(self.height, self.width, torus=False)
self.datacollector = DataCollector({"SsAgent": lambda m: m.schedule.get_breed_count(SsAgent), })
# Create sugar
import numpy as np
sugar_distribution = np.genfromtxt("sugarscape_cg/sugar-map.txt")
for _, x, y in self.grid.coord_iter():
max_sugar = sugar_distribution[x, y]
sugar = Sugar((x, y), self, max_sugar)
self.grid.place_agent(sugar, (x, y))
self.schedule.add(sugar)
# Create agent:
for i in range(self.initial_population):
x = self.random.randrange(self.width)
y = self.random.randrange(self.height)
sugar = self.random.randrange(6, 25)
metabolism = self.random.randrange(2, 4)
vision = self.random.randrange(1, 6)
ssa = SsAgent((x, y), self, False, sugar, metabolism, vision)
self.grid.place_agent(ssa, (x, y))
self.schedule.add(ssa)
self.running = True
self.datacollector.collect(self)
示例14: __init__
def __init__(self, height=50, width=50, init_agents=500, max_metabolism=3, max_vision=10, max_init_sugar=5, min_age=30, max_age=60, init_poll=3, ex_ratio=2, ex_mod=1, poll_growth_rule=True, inheritance_rule=True):
self.height = height
self.width = width
self.init_agents = init_agents
self.init_poll = init_poll
self.max_metabolism = max_metabolism
self.max_vision = max_vision
self.max_init_sugar = max_init_sugar
self.min_age = min_age
self.max_age = max_age
self.ex_ratio = ex_ratio
self.ex_mod = ex_mod
self.replacement_rule = True
self.pollution_rule = False
self.diffusion_rule = False
self.push_rule = False
self.poll_growth_rule = poll_growth_rule
self.expend_rule = True
self.inheritance_rule = inheritance_rule
self.map = self.import_map()
self.grid = MultiGrid(height, width, torus=True)
self.schedule = RandomActivationByType(self)
self.datacollector = DataCollector({'Pollution': (lambda m: m.total_pollution),
'Wealth': (lambda m: m.total_wealth/m.init_agents),
'Agents': (lambda m: len(m.schedule.agents_by_type[ScapeAgent]))},
{'Wealth': self.collect_wealth,
'Metabolism': self.collect_metabolism,
'Vision': self.collect_vision})
self.total_wealth = 0
self.total_pollution = 0
self.populate_sugar()
self.populate_agents()
示例15: __init__
def __init__(self, width = 0, height = 0, torus = False,
time = 0, step_in_year = 0,
number_of_families = family_setting, number_of_monkeys = 0, monkey_birth_count = 0,
monkey_death_count = 0, monkey_id_count = 0,
number_of_humans = 0, grid_type = human_setting, run_type = run_setting, human_id_count = 0):
# change the # of families here for graph.py, but use server.py to change # of families in the movement model
# torus = False means monkey movement can't 'wrap around' edges
super().__init__()
self.width = width
self.height = height
self.time = time # time increases by 1/73 (decimal) each step
self.step_in_year = step_in_year # 1-73; each step is 5 days, and 5 * 73 = 365 days in a year
self.number_of_families = number_of_families
self.number_of_monkeys = number_of_monkeys # total, not in each family
self.monkey_birth_count = monkey_birth_count
self.monkey_death_count = monkey_death_count
self.monkey_id_count = monkey_id_count
self.number_of_humans = number_of_humans
self.grid_type = grid_type # string 'with_humans' or 'without_humans'
self.run_type = run_type # string with 'normal_run' or 'first_run'
self.human_id_count = human_id_count
# width = self._readASCII(vegetation_file)[1] # width as listed at the beginning of the ASCII file
# height = self._readASCII(vegetation_file)[2] # height as listed at the beginning of the ASCII file
width = 85
height = 100
self.grid = MultiGrid(width, height, torus) # creates environmental grid, sets schedule
# MultiGrid is a Mesa function that sets up the grid; options are between SingleGrid and MultiGrid
# MultiGrid allows you to put multiple layers on the grid
self.schedule = RandomActivation(self) # Mesa: Random vs. Staged Activation
# similar to NetLogo's Ask Agents - determines order (or lack of) in which each agents act
empty_masterdict = {'Outside_FNNR': [], 'Elevation_Out_of_Bound': [], 'Household': [], 'PES': [], 'Farm': [],
'Forest': [], 'Bamboo': [], 'Coniferous': [], 'Broadleaf': [], 'Mixed': [], 'Lichen': [],
'Deciduous': [], 'Shrublands': [], 'Clouds': [], 'Farmland': []}
# generate land
if self.run_type == 'first_run':
gridlist = self._readASCII(vegetation_file)[0] # list of all coordinate values; see readASCII function
gridlist2 = self._readASCII(elevation_file)[0] # list of all elevation values
gridlist3 = self._readASCII(household_file)[0] # list of all household coordinate values
gridlist4 = self._readASCII(pes_file)[0] # list of all PES coordinate values
gridlist5 = self._readASCII(farm_file)[0] # list of all farm coordinate values
gridlist6 = self._readASCII(forest_file)[0] # list of all managed forest coordinate values
# The '_populate' function below builds the environmental grid.
for x in [Elevation_Out_of_Bound]:
self._populate(empty_masterdict, gridlist2, x, width, height)
for x in [Household]:
self._populate(empty_masterdict, gridlist3, x, width, height)
for x in [PES]:
self._populate(empty_masterdict, gridlist4, x, width, height)
for x in [Farm]:
self._populate(empty_masterdict, gridlist5, x, width, height)
for x in [Forest]:
self._populate(empty_masterdict, gridlist6, x, width, height)
for x in [Bamboo, Coniferous, Broadleaf, Mixed, Lichen, Deciduous,
Shrublands, Clouds, Farmland, Outside_FNNR]:
self._populate(empty_masterdict, gridlist, x, width, height)
self.saveLoad(empty_masterdict, 'masterdict_veg', 'save')
self.saveLoad(self.grid, 'grid_veg', 'save')
self.saveLoad(self.schedule, 'schedule_veg', 'save')
# Pickling below
load_dict = {} # placeholder for model parameters, leave this here even though it does nothing
if self.grid_type == 'with_humans':
empty_masterdict = self.saveLoad(load_dict, 'masterdict_veg', 'load')
self.grid = self.saveLoad(self.grid, 'grid_veg', 'load')
if self.grid_type == 'without_humans':
empty_masterdict = self.saveLoad(load_dict, 'masterdict_without_humans', 'load')
self.grid = self.saveLoad(load_dict, 'grid_without_humans', 'load')
masterdict = empty_masterdict
startinglist = masterdict['Broadleaf'] + masterdict['Mixed'] + masterdict['Deciduous']
# Agents will start out in high-probability areas.
for coordinate in masterdict['Elevation_Out_of_Bound'] + masterdict['Household'] + masterdict['PES'] \
+ masterdict['Farm'] + masterdict['Forest']:
if coordinate in startinglist:
startinglist.remove(coordinate)
# Creation of resources (yellow dots in simulation)
# These include Fuelwood, Herbs, Bamboo, etc., but right now resource type and frequency are not used
if self.grid_type == 'with_humans':
for line in _readCSV('hh_survey.csv')[1:]: # see 'hh_survey.csv'
hh_id_match = int(line[0])
resource_name = line[1] # frequency is monthly; currently not-used
frequency = float(line[2]) / 6 # divided by 6 for 5-day frequency, as opposed to 30-day (1 month)
y = int(line[5])
x = int(line[6])
resource = Resource(_readCSV('hh_survey.csv')[1:].index(line),
self, (x, y), hh_id_match, resource_name, frequency)
self.grid.place_agent(resource, (int(x), int(y)))
resource_dict.setdefault(hh_id_match, []).append(resource)
if self.run_type == 'first_run':
self.saveLoad(resource_dict, 'resource_dict', 'save')
# Creation of land parcels
land_parcel_count = 0
#.........這裏部分代碼省略.........