當前位置: 首頁>>代碼示例>>Python>>正文


Python transform.Scale類代碼示例

本文整理匯總了Python中menpo.transform.Scale的典型用法代碼示例。如果您正苦於以下問題:Python Scale類的具體用法?Python Scale怎麽用?Python Scale使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Scale類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shapes

    def shapes(self, as_points=False):
        r"""
        Generates a list containing the shapes obtained at each fitting
        iteration.

        Parameters
        -----------
        as_points : `boolean`, optional
            Whether the result is returned as a `list` of :map:`PointCloud` or
            a `list` of `ndarrays`.

        Returns
        -------
        shapes : `list` of :map:`PointCoulds` or `list` of `ndarray`
            A list containing the fitted shapes at each iteration of
            the fitting procedure.
        """
        shapes = []
        for j, (alg, s) in enumerate(zip(self.algorithm_results, self.scales)):
            transform = Scale(self.scales[-1]/s, alg.final_shape.n_dims)
            for t in alg.shapes(as_points=as_points):
                t = transform.apply(t)
                shapes.append(self._affine_correction.apply(t))

        return shapes
開發者ID:jalabort,項目名稱:alabortijcv2015,代碼行數:25,代碼來源:result.py

示例2: tcoords_pixel_scaled

    def tcoords_pixel_scaled(self):
        r"""
        Returns a :map:`PointCloud` that is modified to be suitable for directly
        indexing into the pixels of the texture (e.g. for manual mapping
        operations). The resulting tcoords behave just like image landmarks
        do.

        The operations that are performed are:

          - Flipping the origin from bottom-left to top-left
          - Scaling the tcoords by the image shape (denormalising them)
          - Permuting the axis so that

        Returns
        -------
        tcoords_scaled : :map:`PointCloud`
            A copy of the tcoords that behave like :map:`Image` landmarks

        Examples
        --------
        Recovering pixel values for every texture coordinate:

        >>> texture = texturedtrimesh.texture
        >>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
        >>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]
        """
        scale = Scale(np.array(self.texture.shape)[::-1])
        tcoords = self.tcoords.points.copy()
        # flip the 'y' st 1 -> 0 and 0 -> 1, moving the axis to upper left
        tcoords[:, 1] = 1 - tcoords[:, 1]
        # apply the scale to get the units correct
        tcoords = scale.apply(tcoords)
        # flip axis 0 and axis 1 so indexing is as expected
        tcoords = tcoords[:, ::-1]
        return PointCloud(tcoords)
開發者ID:OlivierML,項目名稱:menpo,代碼行數:35,代碼來源:textured.py

示例3: shapes

    def shapes(self, as_points=False):
        r"""
        Generates a list containing the shapes obtained at each fitting
        iteration.

        Parameters
        -----------
        as_points: boolean, optional
            Whether the results is returned as a list of PointClouds or
            ndarrays.

            Default: False

        Returns
        -------
        shapes: :class:`menpo.shape.PointCoulds or ndarray list
            A list containing the shapes obtained at each fitting iteration.
        """
        n = self.n_levels - 1

        shapes = []
        for j, f in enumerate(self.fittings):
            if self.scaled_levels:
                transform = Scale(self.downscale ** (n - j), 2)
                for t in f.shapes(as_points=as_points):
                    transform.apply_inplace(t)
                    shapes.append(self._affine_correction.apply(t))
            else:
                for t in f.shapes(as_points=as_points):
                    shapes.append(self._affine_correction.apply(t))

        return shapes
開發者ID:jabooth,項目名稱:menpo-archive,代碼行數:32,代碼來源:fittingresult.py

示例4: scale_compose_after_inplace_homog_test

def scale_compose_after_inplace_homog_test():
    # can't do this inplace - so should just give transform chain
    homog = Homogeneous(np.array([[0, 1, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]]))
    s = Scale([3, 4])
    s.compose_after_inplace(homog)
開發者ID:HaoyangWang,項目名稱:menpo,代碼行數:7,代碼來源:h_compose_test.py

示例5: test_scale_compose_after_inplace_homog

def test_scale_compose_after_inplace_homog():
    # can't do this inplace - so should just give transform chain
    homog = Homogeneous(np.array([[0, 1, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]]))
    s = Scale([3, 4])
    with raises(ValueError):
        s.compose_after_inplace(homog)
開發者ID:AshwinRajendraprasad,項目名稱:menpo,代碼行數:8,代碼來源:test_h_compose.py

示例6: __init__

 def __init__(self, image_shape):
     # flip axis 0 and axis 1 so indexing is as expected
     flip_xy = Homogeneous(np.array([[0, 1, 0],
                                     [1, 0, 0],
                                     [0, 0, 1]]))
     # scale to get the units correct
     scale = Scale(image_shape).pseudoinverse
     self.flip_and_scale = scale.compose_before(flip_xy)
開發者ID:jacksoncsy,項目名稱:menpo,代碼行數:8,代碼來源:image.py

示例7: _rescale_shapes_to_reference

def _rescale_shapes_to_reference(fitting_results, n_levels, downscale,
                                 affine_correction):
    n = n_levels - 1
    shapes = []
    for j, f in enumerate(fitting_results):
        transform = Scale(downscale ** (n - j), f.final_shape.n_dims)
        for t in f.shapes:
            t = transform.apply(t)
            shapes.append(affine_correction.apply(t))
    return shapes
開發者ID:OlivierML,項目名稱:menpofit,代碼行數:10,代碼來源:fittingresult.py

示例8: _rescale_shapes_to_reference

def _rescale_shapes_to_reference(algorithm_results, scales, affine_correction):
    r"""
    """
    shapes = []
    for j, (alg, scale) in enumerate(zip(algorithm_results, scales)):
        transform = Scale(scales[-1] / scale, alg.final_shape.n_dims)
        for shape in alg.shapes:
            shape = transform.apply(shape)
            shapes.append(affine_correction.apply(shape))
    return shapes
開發者ID:mengjiaow,項目名稱:menpofit,代碼行數:10,代碼來源:result.py

示例9: chain_compose_after_inplace_chain_test

def chain_compose_after_inplace_chain_test():
    a = PointCloud(np.random.random([10, 2]))
    b = PointCloud(np.random.random([10, 2]))

    t = Translation([3, 4])
    s = Scale([4, 2])
    chain_1 = TransformChain([t, s])
    chain_2 = TransformChain([s.pseudoinverse(), t.pseudoinverse()])
    chain_1.compose_before_inplace(chain_2)

    points = PointCloud(np.random.random([10, 2]))
    chain_res = chain_1.apply(points)
    assert(np.allclose(points.points, chain_res.points))
開發者ID:HaoyangWang,項目名稱:menpo,代碼行數:13,代碼來源:compose_chain_test.py

示例10: chain_compose_before_tps_test

def chain_compose_before_tps_test():
    a = PointCloud(np.random.random([10, 2]))
    b = PointCloud(np.random.random([10, 2]))
    tps = ThinPlateSplines(a, b)

    t = Translation([3, 4])
    s = Scale([4, 2])
    chain = TransformChain([t, s])
    chain_mod = chain.compose_before(tps)

    points = PointCloud(np.random.random([10, 2]))

    manual_res = tps.apply(s.apply(t.apply(points)))
    chain_res = chain_mod.apply(points)
    assert(np.all(manual_res.points == chain_res.points))
開發者ID:HaoyangWang,項目名稱:menpo,代碼行數:15,代碼來源:compose_chain_test.py

示例11: model_to_clip_transform

def model_to_clip_transform(points, xy_scale=0.9, z_scale=0.3):
    r"""
    Produces an Affine Transform which centres and scales 3D points to fit
    into the OpenGL clipping space ([-1, 1], [-1, 1], [1, 1-]). This can be
    used to construct an appropriate projection matrix for use in an
    orthographic Rasterizer. Note that the z-axis is flipped as is default in
    OpenGL - as a result this transform converts the right handed coordinate
    input into a left hand one.

    Parameters
    ----------

    points: :map:`PointCloud`
        The points that should be adjusted.

    xy_scale: `float` 0-1, optional
        Amount by which the boundary is relaxed so the points are not
        right against the edge. A value of 1 means the extremities of the
        point cloud will be mapped onto [-1, 1] [-1, 1] exactly (no boarder)
        A value of 0.5 means the points will be mapped into the range
        [-0.5, 0.5].

        Default: 0.9 (map to [-0.9, 0.9])

    z_scale: float 0-1, optional
        Scale factor by which the z-dimension is squeezed. A value of 1
        means the z-range of the points will be mapped to exactly fit in
        [1, -1]. A scale of 0.1 means the z-range is compressed to fit in the
        range [0.1, -0.1].

    Returns
    -------
    :map:`Affine`
        The affine transform that creates this mapping
    """
    # 1. Centre the points on the origin
    center = Translation(points.centre_of_bounds()).pseudoinverse()
    # 2. Scale the points to exactly fit the boundaries
    scale = Scale(points.range() / 2.0)
    # 3. Apply the relaxations requested - note the flip in the z axis!!
    # This is because OpenGL by default evaluates depth as bigger number ==
    # further away. Thus not only do we need to get to clip space [-1, 1] in
    # all dims) but we must invert the z axis so depth buffering is correctly
    # applied.
    b_scale = NonUniformScale([xy_scale, xy_scale, -z_scale])
    return center.compose_before(scale.pseudoinverse()).compose_before(b_scale)
開發者ID:lydonchandra,項目名稱:menpo3d,代碼行數:46,代碼來源:transform.py

示例12: _train

    def _train(self, original_images, group=None, bounding_box_group_glob=None,
               verbose=False):
        r"""
        """
        # Dlib does not support incremental builds, so we must be passed a list
        if not isinstance(original_images, list):
            original_images = list(original_images)
        # We use temporary landmark groups - so we need the group key to not be
        # None
        if group is None:
            group = original_images[0].landmarks.group_labels[0]

        # Temporarily store all the bounding boxes for rescaling
        for i in original_images:
            i.landmarks['__gt_bb'] = i.landmarks[group].lms.bounding_box()

        if self.reference_shape is None:
            # If no reference shape was given, use the mean of the first batch
            self.reference_shape = compute_reference_shape(
                [i.landmarks['__gt_bb'].lms for i in original_images],
                self.diagonal, verbose=verbose)

        # Rescale to existing reference shape
        images = rescale_images_to_reference_shape(
            original_images, '__gt_bb', self.reference_shape,
            verbose=verbose)

        # Scaling is done - remove temporary gt bounding boxes
        for i, i2 in zip(original_images, images):
            del i.landmarks['__gt_bb']
            del i2.landmarks['__gt_bb']

        generated_bb_func = generate_perturbations_from_gt(
            images, self.n_perturbations, self._perturb_from_gt_bounding_box,
            gt_group=group, bb_group_glob=bounding_box_group_glob,
            verbose=verbose)

        # for each scale (low --> high)
        current_bounding_boxes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = images

            if j == 0:
                current_bounding_boxes = [generated_bb_func(im)
                                          for im in scaled_images]

            # Extract scaled ground truth shapes for current scale
            scaled_gt_shapes = [i.landmarks[group].lms for i in scaled_images]

            # Train the Dlib model
            current_bounding_boxes = self.algorithms[j].train(
                scaled_images, scaled_gt_shapes, current_bounding_boxes,
                prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for bboxes in current_bounding_boxes:
                    for bb in bboxes:
                        transform.apply_inplace(bb)
開發者ID:HaoyangWang,項目名稱:menpofit,代碼行數:77,代碼來源:fitter.py

示例13: _train_batch

    def _train_batch(self, template, shape_batch, increment=False, group=None,
                     shape_forgetting_factor=1.0, verbose=False):
        r"""
        Builds an Active Template Model from a list of landmarked images.
        """
        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle features
            if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features([template],
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
                # Extract potentially rescaled shapes
                scale_transform = Scale(scale_factor=self.scales[j],
                                        n_dims=2)
                scale_shapes = [scale_transform.apply(s)
                                for s in shape_batch]
            else:
                scaled_images = feature_images
                scale_shapes = shape_batch

            # Build the shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(scale_prefix))

            if not increment:
                if j == 0:
                    shape_model = self._build_shape_model(scale_shapes, j)
                    self.shape_models.append(shape_model)
                else:
                    self.shape_models.append(deepcopy(shape_model))
            else:
                self._increment_shape_model(
                    scale_shapes,  self.shape_models[j],
                    forgetting_factor=shape_forgetting_factor)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
                self.reference_shape)
            warped_template = self._warp_template(scaled_images[0], group,
                                                  scaled_reference_shape,
                                                  j, scale_prefix, verbose)
            self.warped_templates.append(warped_template[0])

            if verbose:
                print_dynamic('{}Done\n'.format(scale_prefix))

        # Because we just copy the shape model, we need to wait to trim
        # it after building each model. This ensures we can have a different
        # number of components per level
        for j, sm in enumerate(self.shape_models):
            max_sc = self.max_shape_components[j]
            if max_sc is not None:
                sm.trim_components(max_sc)
開發者ID:HaoyangWang,項目名稱:menpofit,代碼行數:80,代碼來源:base.py

示例14: _train_batch

    def _train_batch(
        self, template, shape_batch, increment=False, group=None, shape_forgetting_factor=1.0, verbose=False
    ):
        r"""
        Builds an Active Template Model from a list of landmarked images.
        """
        # build models at each scale
        if verbose:
            print_dynamic("- Building models\n")

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = "  - Scale {}: ".format(j)
                else:
                    scale_prefix = "  - "
            else:
                scale_prefix = None

            # Handle features
            if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(
                    [template], self.holistic_features[j], prefix=scale_prefix, verbose=verbose
                )
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j], prefix=scale_prefix, verbose=verbose)
                # Extract potentially rescaled shapes
                scale_transform = Scale(scale_factor=self.scales[j], n_dims=2)
                scale_shapes = [scale_transform.apply(s) for s in shape_batch]
            else:
                scaled_images = feature_images
                scale_shapes = shape_batch

            # Build the shape model
            if verbose:
                print_dynamic("{}Building shape model".format(scale_prefix))

            if not increment:
                shape_model = self._build_shape_model(scale_shapes, j)
                self.shape_models.append(shape_model)
            else:
                self._increment_shape_model(scale_shapes, j, forgetting_factor=shape_forgetting_factor)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(self.reference_shape)
            warped_template = self._warp_template(
                scaled_images[0], group, scaled_reference_shape, j, scale_prefix, verbose
            )
            self.warped_templates.append(warped_template[0])

            if verbose:
                print_dynamic("{}Done\n".format(scale_prefix))
開發者ID:lydonchandra,項目名稱:menpofit,代碼行數:62,代碼來源:base.py

示例15: _train_batch

    def _train_batch(self, image_batch, increment=False, group=None,
                     bounding_box_group_glob=None, verbose=False):
        # Rescale to existing reference shape
        image_batch = rescale_images_to_reference_shape(
            image_batch, group, self.reference_shape,
            verbose=verbose)

        generated_bb_func = generate_perturbations_from_gt(
            image_batch, self.n_perturbations,
            self._perturb_from_gt_bounding_box, gt_group=group,
            bb_group_glob=bounding_box_group_glob, verbose=verbose)

        # for each scale (low --> high)
        current_shapes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle holistic features
            if j == 0 and self.holistic_features[j] == no_op:
                # Saves a lot of memory
                feature_images = image_batch
            elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(image_batch,
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = feature_images

            # Extract scaled ground truth shapes for current scale
            scaled_shapes = [i.landmarks[group].lms for i in scaled_images]

            if j == 0:
                msg = '{}Aligning reference shape with bounding boxes.'.format(
                    scale_prefix)
                wrap = partial(print_progress, prefix=msg,
                               end_with_newline=False, verbose=verbose)

                # Extract perturbations at the very bottom level
                for ii in wrap(scaled_images):
                    c_shapes = []
                    for bbox in generated_bb_func(ii):
                        c_s = align_shape_with_bounding_box(
                            self.reference_shape, bbox)
                        c_shapes.append(c_s)
                    current_shapes.append(c_shapes)

            # train supervised descent algorithm
            if not increment:
                current_shapes = self.algorithms[j].train(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)
            else:
                current_shapes = self.algorithms[j].increment(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for image_shapes in current_shapes:
                    for shape in image_shapes:
                        transform.apply_inplace(shape)
開發者ID:HaoyangWang,項目名稱:menpofit,代碼行數:80,代碼來源:fitter.py


注:本文中的menpo.transform.Scale類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。