本文整理匯總了Python中menpo.transform.Scale類的典型用法代碼示例。如果您正苦於以下問題:Python Scale類的具體用法?Python Scale怎麽用?Python Scale使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Scale類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: shapes
def shapes(self, as_points=False):
r"""
Generates a list containing the shapes obtained at each fitting
iteration.
Parameters
-----------
as_points : `boolean`, optional
Whether the result is returned as a `list` of :map:`PointCloud` or
a `list` of `ndarrays`.
Returns
-------
shapes : `list` of :map:`PointCoulds` or `list` of `ndarray`
A list containing the fitted shapes at each iteration of
the fitting procedure.
"""
shapes = []
for j, (alg, s) in enumerate(zip(self.algorithm_results, self.scales)):
transform = Scale(self.scales[-1]/s, alg.final_shape.n_dims)
for t in alg.shapes(as_points=as_points):
t = transform.apply(t)
shapes.append(self._affine_correction.apply(t))
return shapes
示例2: tcoords_pixel_scaled
def tcoords_pixel_scaled(self):
r"""
Returns a :map:`PointCloud` that is modified to be suitable for directly
indexing into the pixels of the texture (e.g. for manual mapping
operations). The resulting tcoords behave just like image landmarks
do.
The operations that are performed are:
- Flipping the origin from bottom-left to top-left
- Scaling the tcoords by the image shape (denormalising them)
- Permuting the axis so that
Returns
-------
tcoords_scaled : :map:`PointCloud`
A copy of the tcoords that behave like :map:`Image` landmarks
Examples
--------
Recovering pixel values for every texture coordinate:
>>> texture = texturedtrimesh.texture
>>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
>>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]
"""
scale = Scale(np.array(self.texture.shape)[::-1])
tcoords = self.tcoords.points.copy()
# flip the 'y' st 1 -> 0 and 0 -> 1, moving the axis to upper left
tcoords[:, 1] = 1 - tcoords[:, 1]
# apply the scale to get the units correct
tcoords = scale.apply(tcoords)
# flip axis 0 and axis 1 so indexing is as expected
tcoords = tcoords[:, ::-1]
return PointCloud(tcoords)
示例3: shapes
def shapes(self, as_points=False):
r"""
Generates a list containing the shapes obtained at each fitting
iteration.
Parameters
-----------
as_points: boolean, optional
Whether the results is returned as a list of PointClouds or
ndarrays.
Default: False
Returns
-------
shapes: :class:`menpo.shape.PointCoulds or ndarray list
A list containing the shapes obtained at each fitting iteration.
"""
n = self.n_levels - 1
shapes = []
for j, f in enumerate(self.fittings):
if self.scaled_levels:
transform = Scale(self.downscale ** (n - j), 2)
for t in f.shapes(as_points=as_points):
transform.apply_inplace(t)
shapes.append(self._affine_correction.apply(t))
else:
for t in f.shapes(as_points=as_points):
shapes.append(self._affine_correction.apply(t))
return shapes
示例4: scale_compose_after_inplace_homog_test
def scale_compose_after_inplace_homog_test():
# can't do this inplace - so should just give transform chain
homog = Homogeneous(np.array([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]))
s = Scale([3, 4])
s.compose_after_inplace(homog)
示例5: test_scale_compose_after_inplace_homog
def test_scale_compose_after_inplace_homog():
# can't do this inplace - so should just give transform chain
homog = Homogeneous(np.array([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]))
s = Scale([3, 4])
with raises(ValueError):
s.compose_after_inplace(homog)
示例6: __init__
def __init__(self, image_shape):
# flip axis 0 and axis 1 so indexing is as expected
flip_xy = Homogeneous(np.array([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]))
# scale to get the units correct
scale = Scale(image_shape).pseudoinverse
self.flip_and_scale = scale.compose_before(flip_xy)
示例7: _rescale_shapes_to_reference
def _rescale_shapes_to_reference(fitting_results, n_levels, downscale,
affine_correction):
n = n_levels - 1
shapes = []
for j, f in enumerate(fitting_results):
transform = Scale(downscale ** (n - j), f.final_shape.n_dims)
for t in f.shapes:
t = transform.apply(t)
shapes.append(affine_correction.apply(t))
return shapes
示例8: _rescale_shapes_to_reference
def _rescale_shapes_to_reference(algorithm_results, scales, affine_correction):
r"""
"""
shapes = []
for j, (alg, scale) in enumerate(zip(algorithm_results, scales)):
transform = Scale(scales[-1] / scale, alg.final_shape.n_dims)
for shape in alg.shapes:
shape = transform.apply(shape)
shapes.append(affine_correction.apply(shape))
return shapes
示例9: chain_compose_after_inplace_chain_test
def chain_compose_after_inplace_chain_test():
a = PointCloud(np.random.random([10, 2]))
b = PointCloud(np.random.random([10, 2]))
t = Translation([3, 4])
s = Scale([4, 2])
chain_1 = TransformChain([t, s])
chain_2 = TransformChain([s.pseudoinverse(), t.pseudoinverse()])
chain_1.compose_before_inplace(chain_2)
points = PointCloud(np.random.random([10, 2]))
chain_res = chain_1.apply(points)
assert(np.allclose(points.points, chain_res.points))
示例10: chain_compose_before_tps_test
def chain_compose_before_tps_test():
a = PointCloud(np.random.random([10, 2]))
b = PointCloud(np.random.random([10, 2]))
tps = ThinPlateSplines(a, b)
t = Translation([3, 4])
s = Scale([4, 2])
chain = TransformChain([t, s])
chain_mod = chain.compose_before(tps)
points = PointCloud(np.random.random([10, 2]))
manual_res = tps.apply(s.apply(t.apply(points)))
chain_res = chain_mod.apply(points)
assert(np.all(manual_res.points == chain_res.points))
示例11: model_to_clip_transform
def model_to_clip_transform(points, xy_scale=0.9, z_scale=0.3):
r"""
Produces an Affine Transform which centres and scales 3D points to fit
into the OpenGL clipping space ([-1, 1], [-1, 1], [1, 1-]). This can be
used to construct an appropriate projection matrix for use in an
orthographic Rasterizer. Note that the z-axis is flipped as is default in
OpenGL - as a result this transform converts the right handed coordinate
input into a left hand one.
Parameters
----------
points: :map:`PointCloud`
The points that should be adjusted.
xy_scale: `float` 0-1, optional
Amount by which the boundary is relaxed so the points are not
right against the edge. A value of 1 means the extremities of the
point cloud will be mapped onto [-1, 1] [-1, 1] exactly (no boarder)
A value of 0.5 means the points will be mapped into the range
[-0.5, 0.5].
Default: 0.9 (map to [-0.9, 0.9])
z_scale: float 0-1, optional
Scale factor by which the z-dimension is squeezed. A value of 1
means the z-range of the points will be mapped to exactly fit in
[1, -1]. A scale of 0.1 means the z-range is compressed to fit in the
range [0.1, -0.1].
Returns
-------
:map:`Affine`
The affine transform that creates this mapping
"""
# 1. Centre the points on the origin
center = Translation(points.centre_of_bounds()).pseudoinverse()
# 2. Scale the points to exactly fit the boundaries
scale = Scale(points.range() / 2.0)
# 3. Apply the relaxations requested - note the flip in the z axis!!
# This is because OpenGL by default evaluates depth as bigger number ==
# further away. Thus not only do we need to get to clip space [-1, 1] in
# all dims) but we must invert the z axis so depth buffering is correctly
# applied.
b_scale = NonUniformScale([xy_scale, xy_scale, -z_scale])
return center.compose_before(scale.pseudoinverse()).compose_before(b_scale)
示例12: _train
def _train(self, original_images, group=None, bounding_box_group_glob=None,
verbose=False):
r"""
"""
# Dlib does not support incremental builds, so we must be passed a list
if not isinstance(original_images, list):
original_images = list(original_images)
# We use temporary landmark groups - so we need the group key to not be
# None
if group is None:
group = original_images[0].landmarks.group_labels[0]
# Temporarily store all the bounding boxes for rescaling
for i in original_images:
i.landmarks['__gt_bb'] = i.landmarks[group].lms.bounding_box()
if self.reference_shape is None:
# If no reference shape was given, use the mean of the first batch
self.reference_shape = compute_reference_shape(
[i.landmarks['__gt_bb'].lms for i in original_images],
self.diagonal, verbose=verbose)
# Rescale to existing reference shape
images = rescale_images_to_reference_shape(
original_images, '__gt_bb', self.reference_shape,
verbose=verbose)
# Scaling is done - remove temporary gt bounding boxes
for i, i2 in zip(original_images, images):
del i.landmarks['__gt_bb']
del i2.landmarks['__gt_bb']
generated_bb_func = generate_perturbations_from_gt(
images, self.n_perturbations, self._perturb_from_gt_bounding_box,
gt_group=group, bb_group_glob=bounding_box_group_glob,
verbose=verbose)
# for each scale (low --> high)
current_bounding_boxes = []
for j in range(self.n_scales):
if verbose:
if len(self.scales) > 1:
scale_prefix = ' - Scale {}: '.format(j)
else:
scale_prefix = ' - '
else:
scale_prefix = None
# handle scales
if self.scales[j] != 1:
# Scale feature images only if scale is different than 1
scaled_images = scale_images(images, self.scales[j],
prefix=scale_prefix,
verbose=verbose)
else:
scaled_images = images
if j == 0:
current_bounding_boxes = [generated_bb_func(im)
for im in scaled_images]
# Extract scaled ground truth shapes for current scale
scaled_gt_shapes = [i.landmarks[group].lms for i in scaled_images]
# Train the Dlib model
current_bounding_boxes = self.algorithms[j].train(
scaled_images, scaled_gt_shapes, current_bounding_boxes,
prefix=scale_prefix, verbose=verbose)
# Scale current shapes to next resolution, don't bother
# scaling final level
if j != (self.n_scales - 1):
transform = Scale(self.scales[j + 1] / self.scales[j],
n_dims=2)
for bboxes in current_bounding_boxes:
for bb in bboxes:
transform.apply_inplace(bb)
示例13: _train_batch
def _train_batch(self, template, shape_batch, increment=False, group=None,
shape_forgetting_factor=1.0, verbose=False):
r"""
Builds an Active Template Model from a list of landmarked images.
"""
# build models at each scale
if verbose:
print_dynamic('- Building models\n')
feature_images = []
# for each scale (low --> high)
for j in range(self.n_scales):
if verbose:
if len(self.scales) > 1:
scale_prefix = ' - Scale {}: '.format(j)
else:
scale_prefix = ' - '
else:
scale_prefix = None
# Handle features
if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
# Compute features only if this is the first pass through
# the loop or the features at this scale are different from
# the features at the previous scale
feature_images = compute_features([template],
self.holistic_features[j],
prefix=scale_prefix,
verbose=verbose)
# handle scales
if self.scales[j] != 1:
# Scale feature images only if scale is different than 1
scaled_images = scale_images(feature_images, self.scales[j],
prefix=scale_prefix,
verbose=verbose)
# Extract potentially rescaled shapes
scale_transform = Scale(scale_factor=self.scales[j],
n_dims=2)
scale_shapes = [scale_transform.apply(s)
for s in shape_batch]
else:
scaled_images = feature_images
scale_shapes = shape_batch
# Build the shape model
if verbose:
print_dynamic('{}Building shape model'.format(scale_prefix))
if not increment:
if j == 0:
shape_model = self._build_shape_model(scale_shapes, j)
self.shape_models.append(shape_model)
else:
self.shape_models.append(deepcopy(shape_model))
else:
self._increment_shape_model(
scale_shapes, self.shape_models[j],
forgetting_factor=shape_forgetting_factor)
# Obtain warped images - we use a scaled version of the
# reference shape, computed here. This is because the mean
# moves when we are incrementing, and we need a consistent
# reference frame.
scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
self.reference_shape)
warped_template = self._warp_template(scaled_images[0], group,
scaled_reference_shape,
j, scale_prefix, verbose)
self.warped_templates.append(warped_template[0])
if verbose:
print_dynamic('{}Done\n'.format(scale_prefix))
# Because we just copy the shape model, we need to wait to trim
# it after building each model. This ensures we can have a different
# number of components per level
for j, sm in enumerate(self.shape_models):
max_sc = self.max_shape_components[j]
if max_sc is not None:
sm.trim_components(max_sc)
示例14: _train_batch
def _train_batch(
self, template, shape_batch, increment=False, group=None, shape_forgetting_factor=1.0, verbose=False
):
r"""
Builds an Active Template Model from a list of landmarked images.
"""
# build models at each scale
if verbose:
print_dynamic("- Building models\n")
feature_images = []
# for each scale (low --> high)
for j in range(self.n_scales):
if verbose:
if len(self.scales) > 1:
scale_prefix = " - Scale {}: ".format(j)
else:
scale_prefix = " - "
else:
scale_prefix = None
# Handle features
if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
# Compute features only if this is the first pass through
# the loop or the features at this scale are different from
# the features at the previous scale
feature_images = compute_features(
[template], self.holistic_features[j], prefix=scale_prefix, verbose=verbose
)
# handle scales
if self.scales[j] != 1:
# Scale feature images only if scale is different than 1
scaled_images = scale_images(feature_images, self.scales[j], prefix=scale_prefix, verbose=verbose)
# Extract potentially rescaled shapes
scale_transform = Scale(scale_factor=self.scales[j], n_dims=2)
scale_shapes = [scale_transform.apply(s) for s in shape_batch]
else:
scaled_images = feature_images
scale_shapes = shape_batch
# Build the shape model
if verbose:
print_dynamic("{}Building shape model".format(scale_prefix))
if not increment:
shape_model = self._build_shape_model(scale_shapes, j)
self.shape_models.append(shape_model)
else:
self._increment_shape_model(scale_shapes, j, forgetting_factor=shape_forgetting_factor)
# Obtain warped images - we use a scaled version of the
# reference shape, computed here. This is because the mean
# moves when we are incrementing, and we need a consistent
# reference frame.
scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(self.reference_shape)
warped_template = self._warp_template(
scaled_images[0], group, scaled_reference_shape, j, scale_prefix, verbose
)
self.warped_templates.append(warped_template[0])
if verbose:
print_dynamic("{}Done\n".format(scale_prefix))
示例15: _train_batch
def _train_batch(self, image_batch, increment=False, group=None,
bounding_box_group_glob=None, verbose=False):
# Rescale to existing reference shape
image_batch = rescale_images_to_reference_shape(
image_batch, group, self.reference_shape,
verbose=verbose)
generated_bb_func = generate_perturbations_from_gt(
image_batch, self.n_perturbations,
self._perturb_from_gt_bounding_box, gt_group=group,
bb_group_glob=bounding_box_group_glob, verbose=verbose)
# for each scale (low --> high)
current_shapes = []
for j in range(self.n_scales):
if verbose:
if len(self.scales) > 1:
scale_prefix = ' - Scale {}: '.format(j)
else:
scale_prefix = ' - '
else:
scale_prefix = None
# Handle holistic features
if j == 0 and self.holistic_features[j] == no_op:
# Saves a lot of memory
feature_images = image_batch
elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
# Compute features only if this is the first pass through
# the loop or the features at this scale are different from
# the features at the previous scale
feature_images = compute_features(image_batch,
self.holistic_features[j],
prefix=scale_prefix,
verbose=verbose)
# handle scales
if self.scales[j] != 1:
# Scale feature images only if scale is different than 1
scaled_images = scale_images(feature_images, self.scales[j],
prefix=scale_prefix,
verbose=verbose)
else:
scaled_images = feature_images
# Extract scaled ground truth shapes for current scale
scaled_shapes = [i.landmarks[group].lms for i in scaled_images]
if j == 0:
msg = '{}Aligning reference shape with bounding boxes.'.format(
scale_prefix)
wrap = partial(print_progress, prefix=msg,
end_with_newline=False, verbose=verbose)
# Extract perturbations at the very bottom level
for ii in wrap(scaled_images):
c_shapes = []
for bbox in generated_bb_func(ii):
c_s = align_shape_with_bounding_box(
self.reference_shape, bbox)
c_shapes.append(c_s)
current_shapes.append(c_shapes)
# train supervised descent algorithm
if not increment:
current_shapes = self.algorithms[j].train(
scaled_images, scaled_shapes, current_shapes,
prefix=scale_prefix, verbose=verbose)
else:
current_shapes = self.algorithms[j].increment(
scaled_images, scaled_shapes, current_shapes,
prefix=scale_prefix, verbose=verbose)
# Scale current shapes to next resolution, don't bother
# scaling final level
if j != (self.n_scales - 1):
transform = Scale(self.scales[j + 1] / self.scales[j],
n_dims=2)
for image_shapes in current_shapes:
for shape in image_shapes:
transform.apply_inplace(shape)