本文整理匯總了Python中mbwind.System類的典型用法代碼示例。如果您正苦於以下問題:Python System類的具體用法?Python System怎麽用?Python System使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了System類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_adding_elements
def test_adding_elements(self):
conn = RigidConnection('conn')
body = RigidBody('body', mass=1.235)
s = System()
s.add_leaf(conn)
conn.add_leaf(body)
s.setup()
# Should have dict of elements
self.assertEqual(s.elements, {'conn': conn, 'body': body})
# Number of states:
# 6 ground
# + 6 constraints on conn
# + 6 <node-0> between conn and body
# ---
# 18
self.assertEqual(s.lhs.shape, (18, 18))
for vec in (s.rhs, s.qd, s.qdd):
self.assertEqual(len(vec), 18)
# Check there are no dofs
self.assertEqual(len(s.q.dofs), 0)
self.assertEqual(len(s.qd.dofs), 0)
self.assertEqual(len(s.qdd.dofs), 0)
示例2: test_three_rigid_elements_as_disc_have_ends_in_right_place
def test_three_rigid_elements_as_disc_have_ends_in_right_place(self):
length = 20.0
offset = 5.0
# Make 3 elements spaced by 120 deg about z axis
system = System()
elements = []
for i in range(3):
rotmat = rotations(('z', i * 2*pi/3))
offset_vector = dot(rotmat, [offset, 0, 0])
conn = RigidConnection('offset%d' % i, offset_vector, rotmat)
element = RigidConnection('element%d' % i, [length, 0, 0])
elements.append(element)
system.add_leaf(conn)
conn.add_leaf(element)
system.setup()
r = offset
R = offset + length
assert_aae(elements[0].rp, [r, 0, 0])
assert_aae(elements[1].rp, [-r/2, r*sqrt(3)/2, 0])
assert_aae(elements[2].rp, [-r/2, -r*sqrt(3)/2, 0])
assert_aae(elements[0].rd, [R, 0, 0])
assert_aae(elements[1].rd, [-R/2, R*sqrt(3)/2, 0])
assert_aae(elements[2].rd, [-R/2, -R*sqrt(3)/2, 0])
示例3: test_inertia_when_offset_axially
def test_inertia_when_offset_axially(self):
density = 230.4
length = 20.0
offset = 5.0
element = _mock_rigid_uniform_beam(density, length)
conn = RigidConnection('offset', offset=[offset, 0, 0])
joint = FreeJoint('joint')
system = System()
system.add_leaf(joint)
joint.add_leaf(conn)
conn.add_leaf(element)
system.setup()
# Calculate reduced system to get rigid body matrices
rsys = ReducedSystem(system)
# Expected values: rod along x axis
m = density * length
Iy = m * (length**2 / 12 + (length/2 + offset)**2)
expected_mass = m * eye(3)
expected_inertia = diag([0, Iy, Iy])
expected_offdiag = zeros((3, 3))
# Y accel -> positive moment about Z
# Z accel -> negative moment about Y
expected_offdiag[2, 1] = +m * (length/2 + offset)
expected_offdiag[1, 2] = -m * (length/2 + offset)
assert_aae(rsys.M[:3, :3], expected_mass)
assert_aae(rsys.M[3:, 3:], expected_inertia)
assert_aae(rsys.M[3:, :3], expected_offdiag)
assert_aae(rsys.M[:3, 3:], expected_offdiag.T)
示例4: test_1dof_nonlinear_system
def test_1dof_nonlinear_system(self):
s = System()
j = PrismaticJoint('joint', [0, 0, 1])
k = 0.45 # quadratic stiffness coefficient
j.internal_force = lambda el, t: -k * el.xstrain[0]**2
b = RigidBody('body', 10)
s.add_leaf(j)
j.add_leaf(b)
s.setup()
# Linearise around z0 = 0: stiffness should be zero
linsys = LinearisedSystem.from_system(s, z0=0)
assert_aae(linsys.M, [[10.0]])
assert_aae(linsys.C, [[0.0]])
assert_aae(linsys.K, [[0.0]])
# Linearise about z0 = 2: stiffness should be 2kx
linsys = LinearisedSystem.from_system(s, z0=[2])
assert_aae(linsys.M, [[10.0]])
assert_aae(linsys.C, [[0.0]])
assert_aae(linsys.K, [[2 * k * 2]])
# Test setting z0 in another way
linsys = LinearisedSystem.from_system(s, z0={'joint': [4.2]})
assert_aae(linsys.M, [[10.0]])
assert_aae(linsys.C, [[0.0]])
assert_aae(linsys.K, [[2 * k * 4.2]])
示例5: test_rigid_body_with_no_dofs
def test_rigid_body_with_no_dofs(self):
s = System()
b = RigidBody('body', 23.7)
s.add_leaf(b)
s.setup()
# Calculate reduced system to get rigid body matrices
rsys = ReducedSystem(s)
self.assertEqual(rsys.M.shape, (0, 0))
self.assertEqual(rsys.Q.shape, (0,))
示例6: test_accounts_for_offset_centre_of_mass_in_applied_force
def test_accounts_for_offset_centre_of_mass_in_applied_force(self):
# check applied force due to gravity is correct
b = RigidBody("body", mass=5.6, Xc=[1.2, 3.4, 5.4])
s = System(gravity=9.81) # need a System to define gravity
s.add_leaf(b)
s.setup()
b.calc_mass()
b.calc_external_loading()
assert_array_equal(b.applied_forces, b.mass * 9.81 * array([0, 0, -1, -3.4, 1.2, 0]))
示例7: test_nonzero_prescribed_acceleration
def test_nonzero_prescribed_acceleration(self):
# Test reduction where a prescribed acceleration is non-zero:
# two sliders in series, with a mass on the end. If the second
# slider's acceleration is prescribed, the first slider's DOF
# sees an inertial force corresponding to the acceleration of
# the mass.
mass = 36.2
s = System()
s1 = PrismaticJoint('slider1', [1, 0, 0])
s2 = PrismaticJoint('slider2', [1, 0, 0])
b = RigidBody('body', mass)
s.add_leaf(s1)
s1.add_leaf(s2)
s2.add_leaf(b)
s.setup()
s.prescribe(s2, acc=0)
# With hinge angle = 0, no generalised inertial force
rsys = ReducedSystem(s)
assert_aae(rsys.M, mass)
assert_aae(rsys.Q, 0)
# With hinge angle = 90deg, do see generalised inertial force
s.prescribe(s2, acc=2.3)
rsys = ReducedSystem(s)
assert_aae(rsys.M, mass)
assert_aae(rsys.Q, -mass * 2.3)
示例8: test_call
def test_call(self):
s = System()
c = RigidConnection('conn', [1, 0, 0])
h = Hinge('hinge', [0, 1, 0])
b = RigidBody('body', 1)
s.add_leaf(h)
h.add_leaf(c)
c.add_leaf(b)
s.setup()
# Set hinge angle
h.xstrain[0] = 0.82
h.vstrain[0] = 1.2
h.astrain[0] = -0.3
s.update_kinematics()
s.solve_reactions()
# Test load outputs
out = LoadOutput('node-1')
assert_array_equal(out(s), s.joint_reactions['node-1'])
out = LoadOutput('node-1', local=True)
F = s.joint_reactions['node-1']
assert_array_equal(out(s), np.r_[np.dot(b.Rp.T, F[:3]),
np.dot(b.Rp.T, F[3:])])
示例9: test_dofs_subset
def test_dofs_subset(self):
s = System()
j = FreeJoint('joint')
s.add_leaf(j)
s.setup()
# 2 nodes, 6 constraints, 6 dofs
self.assertEqual(len(s.q), 2 * 12 + 6 + 6)
self.assertEqual(len(s.qd), 2 * 6 + 6 + 6)
self.assertEqual(len(s.qdd), 2 * 6 + 6 + 6)
self.assertEqual(len(s.q.dofs), 6)
self.assertEqual(len(s.qd.dofs), 6)
self.assertEqual(len(s.qdd.dofs), 6)
示例10: test_print_functions
def test_print_functions(self):
# Not very good tests, but at least check they run without errors
joint = FreeJoint('joint')
body = RigidBody('body', mass=1.235)
s = System()
s.add_leaf(joint)
joint.add_leaf(body)
s.setup()
s.print_states()
s.print_info()
示例11: test_solve_reactions
def test_solve_reactions(self):
# Check it calls the Element method in the right order: down
# the tree from leaves to base. It must also reset reactions.
s = System()
c0 = RigidConnection('c0')
c1 = RigidConnection('c1')
c2 = RigidConnection('c2')
b1 = RigidBody('b1', 1)
b2 = RigidBody('b2', 1)
s.add_leaf(c0)
c0.add_leaf(c1)
c0.add_leaf(c2)
c1.add_leaf(b1)
c2.add_leaf(b2)
s.setup()
# Check elements' iter_reactions() are called
def mock_iter_reactions(element):
calls.append(element)
calls = []
import types
for el in s.elements.values():
el.iter_reactions = types.MethodType(mock_iter_reactions, el)
# Test
s.joint_reactions[:] = 3
s.solve_reactions()
self.assertEqual(calls, [b2, c2, b1, c1, c0])
assert_aae(s.joint_reactions, 0)
示例12: test_1dof_linear_system
def test_1dof_linear_system(self):
s = System()
j = PrismaticJoint('joint', [0, 0, 1])
j.stiffness = 5.0
j.damping = 2.3
b = RigidBody('body', 10)
s.add_leaf(j)
j.add_leaf(b)
s.setup()
linsys = LinearisedSystem.from_system(s)
assert_array_equal(linsys.M, [[10.0]])
assert_array_equal(linsys.C, [[2.3]])
assert_array_equal(linsys.K, [[5.0]])
示例13: rigid_body_mass_matrix
def rigid_body_mass_matrix(element):
joint = FreeJoint('joint')
system = System()
system.add_leaf(joint)
joint.add_leaf(element)
system.setup()
for el in joint.iter_leaves():
system.prescribe(el, 0, 0)
system.update_kinematics()
rsys = ReducedSystem(system)
return rsys.M
示例14: setUp
def setUp(self):
# FE model for beam - no modes, i.e. rigid
self.x = x = linspace(0, self.length, 20)
fe = BeamFE(x, density=2, EA=0, EIy=0, EIz=0)
# Build the elements
self.shaft = Hinge('shaft', [1, 0, 0])
self.roots = []
self.blades = []
self.pitch_bearings = []
for ib in range(1):
R = rotations(('x', ib*2*pi/3), ('y', -pi/2))
root_offset = dot(R, [self.root_length, 0, 0])
root = RigidConnection('root%d' % (ib+1), root_offset, R)
bearing = Hinge('pitch%d' % (ib+1), [1, 0, 0])
blade = ModalElementFromFE('blade%d' % (ib+1), fe, 0)
self.shaft.add_leaf(root)
root.add_leaf(bearing)
bearing.add_leaf(blade)
self.roots.append(root)
self.blades.append(blade)
self.pitch_bearings.append(bearing)
# Build system
self.system = System()
self.system.add_leaf(self.shaft)
self.system.setup()
self.system.update_kinematics() # Set up nodal values initially
self.system.update_matrices()
示例15: setUp
def setUp(self):
# FE model for beam
x = linspace(0, self.length, 20)
fe = BeamFE(x, density=self.density, EA=0, EIy=1, EIz=0)
fe.set_boundary_conditions('C', 'F')
self.beam = ModalElementFromFE('beam', fe, 0)
# Set loading - in negative Z direction
load = np.zeros((len(x), 3))
load[:, 2] = -self.force
self.beam.loading = load
# Hinge with axis along Y axis
self.hinge = Hinge('hinge', [0, 1, 0])
self.hinge.internal_torque = self.hinge_torque
# Build system
self.system = System()
self.system.add_leaf(self.hinge)
self.hinge.add_leaf(self.beam)
self.system.setup()
if not self.free_beam:
# Prescribe hinge to be fixed
self.system.prescribe(self.hinge)
# Initial calculations
self.recalc()