本文整理匯總了Python中markov.Markov類的典型用法代碼示例。如果您正苦於以下問題:Python Markov類的具體用法?Python Markov怎麽用?Python Markov使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Markov類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
def main(params, tracklist):
# twitter info
consumer_key = params.get('twitter', 'consumer_key')
consumer_secret = params.get('twitter', 'consumer_secret')
access_token = params.get('twitter', 'access_token')
access_token_secret = params.get('twitter', 'access_secret')
# auth & api
auth = tweepy.auth.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
# markov
corpus = params.get('markov', 'corpus')
is_pickled = params.getboolean('markov', 'pickled')
m = Markov(corpus)
if is_pickled:
m.load_db()
else:
m.make_db()
# listener
print 'Starting listener for "{}"...'.format(', '.join(tracklist))
listener = Listener(m, is_pickled, api=api)
stream = tweepy.Stream(auth, listener)
stream.filter(track=tracklist)
示例2: test_fold_in
def test_fold_in(self):
"""It should create a parody text
"""
markov = Markov(corpus=self.sample_page1)
key = markov.get_key()
print(key)
print(markov.next(key))
示例3: test_count
def test_count(self):
m = Markov(2)
m.scan(['a', 'b', 'b', 'b', 'c'])
self.assertEquals(m.chains['a']['count'], 1)
self.assertEquals(m.chains['b']['count'], 3)
self.assertEquals(m.chains['a']['next']['b']['count'], 1)
self.assertEquals(m.chains['b']['next']['b']['count'], 2)
self.assertEquals(m.chains['b']['next']['c']['count'], 1)
示例4: lambda_handler
def lambda_handler(event, context):
"""Entrypoint for AWS Lambda. Event contains the payload from the AWS Lambda
call."""
user_text = event['userText']
mixin = event['mixin']
length = int(event['length'])
full_text = user_text + load_mixin(mixin)
markover = Markov(full_text)
return markover.generate(length)
示例5: __init__
class Parser:
"""
Base class for a lexer/parser that has the rules defined as methods
"""
tokens = ()
precedence = ()
def __init__(self, **kw):
self.debug = kw.get('debug', 0)
self.sentences = []
self.markov = Markov()
self.clause_starter = {}
self.para_starter = []
self.words = kw.get('words', None)
try:
modname = os.path.split(os.path.splitext(__file__)[0])[1] + "_" + self.__class__.__name__
except:
modname = "parser"+"_"+self.__class__.__name__
self.debugfile = modname + ".dbg"
self.tabmodule = modname + "_" + "parsetab"
#print self.debugfile, self.tabmodule
# Build the lexer and parser
lex.lex(module=self, debug=self.debug)
yacc.yacc(module=self,
debug=self.debug,
debugfile=self.debugfile,
tabmodule=self.tabmodule)
def run(self):
s = sys.stdin.read()
s = s.replace('\n\n', '\x00')
s = s.replace('\x00\x00', '\x00')
s = s.replace('\n\n', '')
s = s.replace('\n', ' ')
s = s.replace(' ', ' ')
yacc.parse(s)
print self.sentences
self.markov.printout()
print
print "clause starters"
keys = self.clause_starter.keys()
keys.sort()
for k in keys:
v = self.clause_starter[k]
print "\t", repr(k), v
print
print "para starters", self.para_starter
print
self.markov.prepare()
sentence = random_sentence(self.markov, 800,
starters=self.clause_starter,
para_starters=self.para_starter)
print_sentence(sentence, word_filter=self.words)
示例6: markovComments
def markovComments(comments):
words = comments.split(' ')
m = Markov(words)
startWord = random.choice(m.getStartingUnits())
chain = m.getNextSentence(startWord, 20)
sentence = startWord
for word in chain:
sentence += ' ' + word
return sentence
示例7: newTweet
def newTweet():
tweet_data = Markov(prefix="tweets")
tweetline = tweet_data.generate()
tweet = ""
for word in tweetline:
tweet += word + " "
tweet = tweet.rstrip()
if len(tweet)>140:
return newTweet()
else:
return tweet
示例8: test_probabilities
def test_probabilities(self):
m = Markov(2)
m.scan(['bacon', 'fish', 'bacon', 'lung',
'bacon', 'lung', 'bacon', 'lung', '.'])
result = m.compute_probabilities(3)
self.assertEquals(len(result), 3)
# least likely to most
self.assertEquals(result[0]['word'], 'fish')
self.assertEquals(result[0]['chance'], 1.0/8.0 * (1.0 / 0.5))
self.assertEquals(result[1]['word'], 'lung')
self.assertEquals(result[1]['chance'], 3.0/8.0 * (1.0 / 0.5))
self.assertEquals(result[2]['word'], 'bacon')
self.assertEquals(result[2]['chance'], 0.5 * (1.0 / 0.5))
示例9: main
def main():
"""set-up applcation and send love"""
api = get_handle()
markov = Markov(get_corpus())
people = People(api)
love = markov.generate_markov_text(random.randrange(15, 20))
to_email = people.get_random()
print to_email
print love
if api.send_love(to_email, love):
return 0
else:
return -1
示例10: Test_Markov
class Test_Markov(unittest.TestCase):
def setUp(self):
self.test_text = "I have bought this bonnet.\r\nI am Mr. Darcy.\r\nI am.\r\n"
with open("in.txt",'w') as f:
f.write(self.test_text)
self.test_outfile = "out.txt"
ospl.process_data("in.txt", self.test_outfile, True)
self.test_markov = Markov(self.test_outfile)
def test_unigrams(self):
self.assertEqual(type(self.test_markov.unigrams), defaultdict)
self.assertEqual(round(sum(self.test_markov.unigrams.values()), 5), 1.0)
self.assertEqual(self.test_markov.unigrams["**Beginning**"], 0.15)
def test_bigrams(self):
self.assertEqual(type(self.test_markov.bigrams), defaultdict)
self.assertEqual(round(sum(self.test_markov.bigrams["I"].values()), 5), 1.0)
self.assertEqual(self.test_markov.bigrams["**Beginning**"]["I"], 1.0)
self.assertEqual(self.test_markov.bigrams["I"]["have"], 1/3.)
def test_bigrams_counter(self):
bigram_freqs = self.test_markov.make_ngram_freqs_dict(2)
self.assertEqual(type(bigram_freqs), defaultdict)
self.assertEqual(bigram_freqs["I"]["am"], 2)
self.assertEqual(bigram_freqs["."]["**End**"], 3)
def test_trigrams(self):
self.assertEqual(type(self.test_markov.trigrams), defaultdict)
self.assertEqual(round(sum(self.test_markov.trigrams[("I","am")].values()), 5), 1.0)
self.assertEqual(self.test_markov.trigrams[("**Beginning**","I")]["am"], 2/3.)
self.assertEqual(self.test_markov.trigrams[("I","have")]["rocketships"], 1e-5)
def test_trigrams_counter(self):
trigram_freqs = self.test_markov.make_ngram_freqs_dict(3)
self.assertEqual(type(trigram_freqs), defaultdict)
self.assertEqual(trigram_freqs[("Darcy",".")]["**End**"], 1)
self.assertEqual(trigram_freqs[("**Beginning**","I")]["am"], 2)
def test_make_sentence(self):
self.test_markov.make_ngram_sentence(n=2)
self.test_markov.make_ngram_sentence(n=3)
self.assertRaises(AssertionError, self.test_markov.make_ngram_sentence, n=5)
def test_score_sentence(self):
""" make up nonsense sentence, make sure it scores worse than Markov sentence. possibly also make up word with same words as corpus but in a completly bogus order, that should also score lower"""
nonsense = "Vestiges of cetaceous gentility."
nonsense_score = self.test_markov.score_sentence(nonsense)
real_trigram_sent = self.test_markov.make_ngram_sentence()
real_trigram_score = self.test_markov.score_sentence(real_trigram_sent)
weird_order = "Darcy . I bonnet am bought have am"
weird_order_score = self.test_markov.score_sentence(weird_order)
self.assertGreater(nonsense_score, real_trigram_score)
self.assertGreater(weird_order_score, real_trigram_score)
def tearDown(self):
os.remove("in.txt")
os.remove("out.txt")
示例11: setUp
def setUp(self):
self.test_text = "I have bought this bonnet.\r\nI am Mr. Darcy.\r\nI am.\r\n"
with open("in.txt",'w') as f:
f.write(self.test_text)
self.test_outfile = "out.txt"
ospl.process_data("in.txt", self.test_outfile, True)
self.test_markov = Markov(self.test_outfile)
示例12: main
def main():
twitter = Twython(KEY, access_token=TOKEN)
try:
tweets = twitter.get_user_timeline(screen_name=raw_input("twitter username: "), count=200)
except:
print "User does not exist."
return
try:
count = int(raw_input("number of tweets to generate: "))
text = ""
for tw in tweets:
text += re.sub("https?:\/\/([^\s]+)", "", tw['text']) + ". "
mk = Markov(text)
sentences = ""
for i in range(0, count):
print mk.sentence()
except:
print "Please enter a valid number."
示例13: TestParsing
class TestParsing(unittest.TestCase):
def setUp(self):
self.markov = Markov()
def test_basic_tokenize(self):
result = self.markov.tokenize("grraaaaa brainss monkeybutter")
self.assertEquals(result, ["grraaaaa", "brainss", "monkeybutter"])
def test_basic_scan(self):
self.markov.scan(['a', 'b', 'c', 'd', 'e'])
self.assertTrue('a' in self.markov.chains)
self.assertTrue('b' in self.markov.chains)
self.assertTrue('c' in self.markov.chains)
self.assertTrue('b' in self.markov.chains['a']['next'])
self.assertTrue('c' in self.markov.chains['a']['next']['b']['next'])
self.assertTrue('d' in self.markov.chains['b']['next']['c']['next'])
def test_count(self):
m = Markov(2)
m.scan(['a', 'b', 'b', 'b', 'c'])
self.assertEquals(m.chains['a']['count'], 1)
self.assertEquals(m.chains['b']['count'], 3)
self.assertEquals(m.chains['a']['next']['b']['count'], 1)
self.assertEquals(m.chains['b']['next']['b']['count'], 2)
self.assertEquals(m.chains['b']['next']['c']['count'], 1)
def test_probabilities(self):
m = Markov(2)
m.scan(['bacon', 'fish', 'bacon', 'lung',
'bacon', 'lung', 'bacon', 'lung', '.'])
result = m.compute_probabilities(3)
self.assertEquals(len(result), 3)
# least likely to most
self.assertEquals(result[0]['word'], 'fish')
self.assertEquals(result[0]['chance'], 1.0/8.0 * (1.0 / 0.5))
self.assertEquals(result[1]['word'], 'lung')
self.assertEquals(result[1]['chance'], 3.0/8.0 * (1.0 / 0.5))
self.assertEquals(result[2]['word'], 'bacon')
self.assertEquals(result[2]['chance'], 0.5 * (1.0 / 0.5))
示例14: __init__
def __init__ (self, jid, password, room, nick, fileName):
sleekxmpp.ClientXMPP.__init__(self, jid, password)
self.room = room
self.nick = nick
#initialize markov chain with input file
inputFile = open(fileName)
self.markov = Markov(inputFile)
self.add_event_handler("session_start", self.start)
self.add_event_handler("groupchat_message", self.messageHandler)
示例15: main
def main():
r = praw.Reddit(user_agent="Markov Comment Generator by /u/officialdovahkiin")
name = raw_input("reddit username: ")
user = r.get_redditor(name)
if (valid_redditor(user)):
try:
comment_amount = int(raw_input("number of comments to consider: "))
sentence_amount = int(raw_input("number of sentences to generate: "))
comments = user.get_comments(limit=(None if comment_amount <= 0 else comment_amount))
text = ""
for c in comments:
text += format_comment(c.body) + ". "
mk = Markov(text)
sentences = ""
for i in range(0, sentence_amount):
sentences += mk.sentence() + ". "
print sentences
except:
print "Please enter a valid number"
else:
print "No comments found for /u/" + name