當前位置: 首頁>>代碼示例>>Python>>正文


Python Group.kmax方法代碼示例

本文整理匯總了Python中larch.Group.kmax方法的典型用法代碼示例。如果您正苦於以下問題:Python Group.kmax方法的具體用法?Python Group.kmax怎麽用?Python Group.kmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在larch.Group的用法示例。


在下文中一共展示了Group.kmax方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: autobk

# 需要導入模塊: from larch import Group [as 別名]
# 或者: from larch.Group import kmax [as 別名]
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=False, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [False]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return

    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(4, min(128, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
#.........這裏部分代碼省略.........
開發者ID:NEWille,項目名稱:xraylarch,代碼行數:103,代碼來源:autobk.py

示例2: autobk

# 需要導入模塊: from larch import Group [as 別名]
# 或者: from larch.Group import kmax [as 別名]
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0.1,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0.1]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = sys.stdout
    if _larch is not None:
        msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
#.........這裏部分代碼省略.........
開發者ID:xraypy,項目名稱:xraylarch,代碼行數:103,代碼來源:autobk.py


注:本文中的larch.Group.kmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。