本文整理匯總了Python中larch.Group.a方法的典型用法代碼示例。如果您正苦於以下問題:Python Group.a方法的具體用法?Python Group.a怎麽用?Python Group.a使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類larch.Group
的用法示例。
在下文中一共展示了Group.a方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mback
# 需要導入模塊: from larch import Group [as 別名]
# 或者: from larch.Group import a [as 別名]
def mback(energy, mu, group=None, order=3, z=None, edge='K', e0=None, emin=None, emax=None,
whiteline=None, leexiang=False, tables='chantler', fit_erfc=False, return_f1=False,
_larch=None):
"""
Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
optionally, the Lee & Xiang extension
Arguments:
energy, mu: arrays of energy and mu(E)
order: order of polynomial [3]
group: output group (and input group for e0)
z: Z number of absorber
edge: absorption edge (K, L3)
e0: edge energy
emin: beginning energy for fit
emax: ending energy for fit
whiteline: exclusion zone around white lines
leexiang: flag to use the Lee & Xiang extension
tables: 'chantler' (default) or 'cl'
fit_erfc: True to float parameters of error function
return_f1: True to put the f1 array in the group
Returns:
group.f2: tabulated f2(E)
group.f1: tabulated f1(E) (if return_f1 is True)
group.fpp: matched data
group.mback_params: Group of parameters for the minimization
References:
* MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
* Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
* Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
* Chantler: http://dx.doi.org/10.1063/1.555974
"""
order=int(order)
if order < 1: order = 1 # set order of polynomial
if order > MAXORDER: order = MAXORDER
### implement the First Argument Group convention
energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
defaults=(mu,), group=group,
fcn_name='mback')
if len(energy.shape) > 1:
energy = energy.squeeze()
if len(mu.shape) > 1:
mu = mu.squeeze()
group = set_xafsGroup(group, _larch=_larch)
if e0 is None: # need to run find_e0:
e0 = xray_edge(z, edge, _larch=_larch)[0]
if e0 is None:
e0 = group.e0
if e0 is None:
find_e0(energy, mu, group=group)
### theta is an array used to exclude the regions <emin, >emax, and
### around white lines, theta=0.0 in excluded regions, theta=1.0 elsewhere
(i1, i2) = (0, len(energy)-1)
if emin is not None: i1 = index_of(energy, emin)
if emax is not None: i2 = index_of(energy, emax)
theta = np.ones(len(energy)) # default: 1 throughout
theta[0:i1] = 0
theta[i2:-1] = 0
if whiteline:
pre = 1.0*(energy<e0)
post = 1.0*(energy>e0+float(whiteline))
theta = theta * (pre + post)
if edge.lower().startswith('l'):
l2 = xray_edge(z, 'L2', _larch=_larch)[0]
l2_pre = 1.0*(energy<l2)
l2_post = 1.0*(energy>l2+float(whiteline))
theta = theta * (l2_pre + l2_post)
## this is used to weight the pre- and post-edge differently as
## defined in the MBACK paper
weight1 = 1*(energy<e0)
weight2 = 1*(energy>e0)
weight = np.sqrt(sum(weight1))*weight1 + np.sqrt(sum(weight2))*weight2
## get the f'' function from CL or Chantler
if tables.lower() == 'chantler':
f1 = f1_chantler(z, energy, _larch=_larch)
f2 = f2_chantler(z, energy, _larch=_larch)
else:
(f1, f2) = f1f2(z, energy, edge=edge, _larch=_larch)
group.f2=f2
if return_f1: group.f1=f1
n = edge
if edge.lower().startswith('l'): n = 'L'
params = Group(s = Parameter(1, vary=True, _larch=_larch), # scale of data
xi = Parameter(50, vary=fit_erfc, min=0, _larch=_larch), # width of erfc
em = Parameter(xray_line(z, n, _larch=_larch)[0], vary=False, _larch=_larch), # erfc centroid
e0 = Parameter(e0, vary=False, _larch=_larch), # abs. edge energy
## various arrays need by the objective function
en = energy,
#.........這裏部分代碼省略.........