當前位置: 首頁>>代碼示例>>Python>>正文


Python Group.a方法代碼示例

本文整理匯總了Python中larch.Group.a方法的典型用法代碼示例。如果您正苦於以下問題:Python Group.a方法的具體用法?Python Group.a怎麽用?Python Group.a使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在larch.Group的用法示例。


在下文中一共展示了Group.a方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mback

# 需要導入模塊: from larch import Group [as 別名]
# 或者: from larch.Group import a [as 別名]
def mback(energy, mu, group=None, order=3, z=None, edge='K', e0=None, emin=None, emax=None,
          whiteline=None, leexiang=False, tables='chantler', fit_erfc=False, return_f1=False,
          _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments:
      energy, mu:    arrays of energy and mu(E)
      order:         order of polynomial [3]
      group:         output group (and input group for e0)
      z:             Z number of absorber
      edge:          absorption edge (K, L3)
      e0:            edge energy
      emin:          beginning energy for fit
      emax:          ending energy for fit
      whiteline:     exclusion zone around white lines
      leexiang:      flag to use the Lee & Xiang extension
      tables:        'chantler' (default) or 'cl'
      fit_erfc:      True to float parameters of error function
      return_f1:     True to put the f1 array in the group

    Returns:
      group.f2:      tabulated f2(E)
      group.f1:      tabulated f1(E) (if return_f1 is True)
      group.fpp:     matched data
      group.mback_params:  Group of parameters for the minimization

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order=int(order)
    if order < 1: order = 1 # set order of polynomial
    if order > MAXORDER: order = MAXORDER

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    group = set_xafsGroup(group, _larch=_larch)

    if e0 is None:              # need to run find_e0:
        e0 = xray_edge(z, edge, _larch=_larch)[0]
    if e0 is None:
        e0 = group.e0
    if e0 is None:
        find_e0(energy, mu, group=group)


    ### theta is an array used to exclude the regions <emin, >emax, and
    ### around white lines, theta=0.0 in excluded regions, theta=1.0 elsewhere
    (i1, i2) = (0, len(energy)-1)
    if emin is not None: i1 = index_of(energy, emin)
    if emax is not None: i2 = index_of(energy, emax)
    theta = np.ones(len(energy)) # default: 1 throughout
    theta[0:i1]  = 0
    theta[i2:-1] = 0
    if whiteline:
        pre     = 1.0*(energy<e0)
        post    = 1.0*(energy>e0+float(whiteline))
        theta   = theta * (pre + post)
    if edge.lower().startswith('l'):
        l2      = xray_edge(z, 'L2', _larch=_larch)[0]
        l2_pre  = 1.0*(energy<l2)
        l2_post = 1.0*(energy>l2+float(whiteline))
        theta   = theta * (l2_pre + l2_post)


    ## this is used to weight the pre- and post-edge differently as
    ## defined in the MBACK paper
    weight1 = 1*(energy<e0)
    weight2 = 1*(energy>e0)
    weight  = np.sqrt(sum(weight1))*weight1 + np.sqrt(sum(weight2))*weight2


    ## get the f'' function from CL or Chantler
    if tables.lower() == 'chantler':
        f1 = f1_chantler(z, energy, _larch=_larch)
        f2 = f2_chantler(z, energy, _larch=_larch)
    else:
        (f1, f2) = f1f2(z, energy, edge=edge, _larch=_larch)
    group.f2=f2
    if return_f1: group.f1=f1

    n = edge
    if edge.lower().startswith('l'): n = 'L'
    params = Group(s      = Parameter(1, vary=True, _larch=_larch),     # scale of data
                   xi     = Parameter(50, vary=fit_erfc, min=0, _larch=_larch), # width of erfc
                   em     = Parameter(xray_line(z, n, _larch=_larch)[0], vary=False, _larch=_larch), # erfc centroid
                   e0     = Parameter(e0, vary=False, _larch=_larch),   # abs. edge energy
                   ## various arrays need by the objective function
                   en     = energy,
#.........這裏部分代碼省略.........
開發者ID:bruceravel,項目名稱:xraylarch,代碼行數:103,代碼來源:mback.py


注:本文中的larch.Group.a方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。