本文整理匯總了Python中keras.layers.Dense.set_weights方法的典型用法代碼示例。如果您正苦於以下問題:Python Dense.set_weights方法的具體用法?Python Dense.set_weights怎麽用?Python Dense.set_weights使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers.Dense
的用法示例。
在下文中一共展示了Dense.set_weights方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Attention
# 需要導入模塊: from keras.layers import Dense [as 別名]
# 或者: from keras.layers.Dense import set_weights [as 別名]
class Attention(Model):
"""Implements standard attention.
Given some memory, a memory mask and a query, outputs the weighted memory cells.
"""
def __init__(self, memory_cells, query, project_query=False):
"""Define Attention.
Args:
memory_cells (SequenceBatch): a SequenceBatch containing a Tensor of shape (batch_size, num_cells, cell_dim)
query (Tensor): a tensor of shape (batch_size, query_dim).
project_query (bool): defaults to False. If True, the query goes through an extra projection layer to
coerce it to cell_dim.
"""
cell_dim = memory_cells.values.get_shape().as_list()[2]
if project_query:
# project the query up/down to cell_dim
self._projection_layer = Dense(cell_dim, activation='linear')
query = self._projection_layer(query) # (batch_size, cand_dim)
memory_values, memory_mask = memory_cells.values, memory_cells.mask
# batch matrix multiply to compute logit scores for all choices in all batches
query = tf.expand_dims(query, 2) # (batch_size, cell_dim, 1)
logit_values = tf.batch_matmul(memory_values, query) # (batch_size, num_cells, 1)
logit_values = tf.squeeze(logit_values, [2]) # (batch_size, num_cells)
# set all pad logits to negative infinity
logits = SequenceBatch(logit_values, memory_mask)
logits = logits.with_pad_value(-float('inf'))
# normalize to get probs
probs = tf.nn.softmax(logits.values) # (batch_size, num_cells)
retrieved = tf.batch_matmul(tf.expand_dims(probs, 1), memory_values) # (batch_size, 1, cell_dim)
retrieved = tf.squeeze(retrieved, [1]) # (batch_size, cell_dim)
self._logits = logits.values
self._probs = probs
self._retrieved = retrieved
@property
def logits(self):
return self._logits # (batch_size, num_cells)
@property
def probs(self):
return self._probs # (batch_size, num_cells)
@property
def retrieved(self):
return self._retrieved # (batch_size, cell_dim)
@property
def projection_weights(self):
"""Get projection weights.
Returns:
(np.array, np.array): a pair of numpy arrays, (W, b) used to project the query tensor to
match the predicate embedding dimension.
"""
return self._projection_layer.get_weights()
@projection_weights.setter
def projection_weights(self, value):
W, b = value
self._projection_layer.set_weights([W, b])
示例2: add_top_layers
# 需要導入模塊: from keras.layers import Dense [as 別名]
# 或者: from keras.layers.Dense import set_weights [as 別名]
def add_top_layers(model, image_size, patch_net='resnet50', block_type='resnet',
depths=[512,512], repetitions=[1,1],
block_fn=bottleneck_org, nb_class=2,
shortcut_with_bn=True, bottleneck_enlarge_factor=4,
dropout=.0, weight_decay=.0001,
add_heatmap=False, avg_pool_size=(7,7), return_heatmap=False,
add_conv=True, add_shortcut=False,
hm_strides=(1,1), hm_pool_size=(5,5),
fc_init_units=64, fc_layers=2):
def add_residual_blocks(block):
for depth,repetition in zip(depths, repetitions):
block = _residual_block(
block_fn, depth, repetition,
dropout=dropout, weight_decay=weight_decay,
shortcut_with_bn=shortcut_with_bn,
bottleneck_enlarge_factor=bottleneck_enlarge_factor)(block)
pool = GlobalAveragePooling2D()(block)
dropped = Dropout(dropout)(pool)
return dropped
def add_vgg_blocks(block):
for depth,repetition in zip(depths, repetitions):
block = _vgg_block(depth, repetition,
dropout=dropout,
weight_decay=weight_decay)(block)
pool = GlobalAveragePooling2D()(block)
dropped = Dropout(dropout)(pool)
return dropped
def add_fc_layers(block):
flattened = Flatten()(block)
dropped = Dropout(dropout)(flattened)
units=fc_init_units
for i in xrange(fc_layers):
fc = Dense(units, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(dropped)
norm = BatchNormalization()(fc)
relu = Activation('relu')(norm)
dropped = Dropout(dropout)(relu)
units /= 2
return dropped, flattened
if patch_net == 'resnet50':
last_kept_layer = model.layers[-5]
elif patch_net == 'yaroslav':
last_kept_layer = model.layers[-3]
else:
last_kept_layer = model.layers[-4]
block = last_kept_layer.output
channels = 1 if patch_net == 'yaroslav' else 3
image_input = Input(shape=(image_size[0], image_size[1], channels))
model0 = Model(inputs=model.inputs, outputs=block)
block = model0(image_input)
if add_heatmap or return_heatmap: # add softmax heatmap.
pool1 = AveragePooling2D(pool_size=avg_pool_size,
strides=hm_strides)(block)
if return_heatmap:
dropped = pool1
else:
dropped = Dropout(dropout)(pool1)
clf_layer = model.layers[-1]
clf_weights = clf_layer.get_weights()
clf_classes = clf_layer.output_shape[1]
if return_heatmap:
activation = activations.softmax(x, axis=CHANNEL_AXIS)
else:
activation = 'relu'
heatmap_layer = Dense(clf_classes, activation=activation,
kernel_regularizer=l2(weight_decay))
heatmap = heatmap_layer(dropped)
heatmap_layer.set_weights(clf_weights)
if return_heatmap:
model_heatmap = Model(inputs=image_input, outputs=heatmap)
return model_heatmap
block = MaxPooling2D(pool_size=hm_pool_size)(heatmap)
top_layer_nb = 8
else:
top_layer_nb = 2
if add_conv:
if block_type == 'resnet':
block = add_residual_blocks(block)
elif block_type == 'vgg':
block = add_vgg_blocks(block)
else:
raise Exception('Unsupported block type: ' + block_type)
else:
block, flattened = add_fc_layers(block)
if add_shortcut and not add_conv:
dense = Dense(nb_class, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(block)
shortcut = Dense(nb_class, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(flattened)
addition = add([dense, shortcut])
dense = Activation('softmax')(addition)
else:
dense = Dense(nb_class, kernel_initializer="he_normal",
activation='softmax',
kernel_regularizer=l2(weight_decay))(block)
model_addtop = Model(inputs=image_input, outputs=dense)
#.........這裏部分代碼省略.........