本文整理匯總了Python中keras.layers.Dense類的典型用法代碼示例。如果您正苦於以下問題:Python Dense類的具體用法?Python Dense怎麽用?Python Dense使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Dense類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __build_network
def __build_network(self):
embedding_layer = Embedding(
self.corpus_size,
EMBEDDING_DIM,
weights=[self.embedding_matrix],
input_length=MAX_TITLE_LENGTH,
trainable=False)
# train a 1D convnet with global maxpooling
sequence_input = Input(shape=(MAX_TITLE_LENGTH, ), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
x = LSTM(
128,
dropout_W=0.2,
dropout_U=0.2,
W_regularizer=regularizers.l2(0.01),
b_regularizer=regularizers.l2(0.01))(embedded_sequences)
x = Dropout(0.5)(x)
preds = Dense(self.class_num, activation='softmax')(x)
print preds.get_shape()
if self.optimizer == 'adam':
self.optimizer = Adam(lr=self.lr)
if self.optimizer == 'rmsprop':
self.optimizer = RMSprop(lr=self.lr)
# rmsprop = RMSprop(lr=self.lr)
self.model = Model(sequence_input, preds)
self.model.compile(
loss='categorical_crossentropy',
optimizer=self.optimizer,
metrics=['acc'])
示例2: test_layer_trainability_switch
def test_layer_trainability_switch():
# with constructor argument, in Sequential
model = Sequential()
model.add(Dense(2, trainable=False, input_dim=1))
assert model.trainable_weights == []
# by setting the `trainable` argument, in Sequential
model = Sequential()
layer = Dense(2, input_dim=1)
model.add(layer)
assert model.trainable_weights == layer.trainable_weights
layer.trainable = False
assert model.trainable_weights == []
# with constructor argument, in Model
x = Input(shape=(1,))
y = Dense(2, trainable=False)(x)
model = Model(x, y)
assert model.trainable_weights == []
# by setting the `trainable` argument, in Model
x = Input(shape=(1,))
layer = Dense(2)
y = layer(x)
model = Model(x, y)
assert model.trainable_weights == layer.trainable_weights
layer.trainable = False
assert model.trainable_weights == []
示例3: __init__
def __init__(self, memory_cells, query, project_query=False):
"""Define Attention.
Args:
memory_cells (SequenceBatch): a SequenceBatch containing a Tensor of shape (batch_size, num_cells, cell_dim)
query (Tensor): a tensor of shape (batch_size, query_dim).
project_query (bool): defaults to False. If True, the query goes through an extra projection layer to
coerce it to cell_dim.
"""
cell_dim = memory_cells.values.get_shape().as_list()[2]
if project_query:
# project the query up/down to cell_dim
self._projection_layer = Dense(cell_dim, activation='linear')
query = self._projection_layer(query) # (batch_size, cand_dim)
memory_values, memory_mask = memory_cells.values, memory_cells.mask
# batch matrix multiply to compute logit scores for all choices in all batches
query = tf.expand_dims(query, 2) # (batch_size, cell_dim, 1)
logit_values = tf.batch_matmul(memory_values, query) # (batch_size, num_cells, 1)
logit_values = tf.squeeze(logit_values, [2]) # (batch_size, num_cells)
# set all pad logits to negative infinity
logits = SequenceBatch(logit_values, memory_mask)
logits = logits.with_pad_value(-float('inf'))
# normalize to get probs
probs = tf.nn.softmax(logits.values) # (batch_size, num_cells)
retrieved = tf.batch_matmul(tf.expand_dims(probs, 1), memory_values) # (batch_size, 1, cell_dim)
retrieved = tf.squeeze(retrieved, [1]) # (batch_size, cell_dim)
self._logits = logits.values
self._probs = probs
self._retrieved = retrieved
示例4: __build_network
def __build_network(self):
embedding_layer = Embedding(self.corpus_size,
EMBEDDING_DIM,
weights=[self.embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
# train a 1D convnet with global maxpooling
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
# sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
# embedded_sequences = embedding_layer(sequence_input)
x = Convolution1D(128, 5)(embedded_sequences)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling1D(5)(x)
x = Convolution1D(128, 5)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling1D(5)(x)
print "before 256", x.get_shape()
x = Convolution1D(128, 5)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
print "before 35 ", x.get_shape()
x = MaxPooling1D(35)(x)
x = Flatten()(x)
# print x.shape()
x = Dense(128, activation='relu')(x)
print x.get_shape()
x = Dropout(0.5)(x)
print x.get_shape()
preds = Dense(self.class_num, activation='softmax')(x)
print preds.get_shape()
# conv_blocks = []
# for sz in self.filter_sizes:
# conv = Convolution1D(filters=self.num_filters, kernel_size=sz, activation="relu", padding='valid', strides=1)(embedded_sequences)
# conv = MaxPooling1D(pool_size=2)(conv)
# conv = Flatten()(conv)
# conv_blocks.append(conv)
# z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
# z = Dropout(rate=0.5)(z)
# z = Dense(units=self.hidden_dims, activation="relu")(z)
# preds = Dense(self.class_num, activation="softmax")(z)
rmsprop = RMSprop(lr=0.001)
self.model = Model(sequence_input, preds)
self.model.compile(loss='categorical_crossentropy', optimizer=rmsprop, metrics=['acc'])
示例5: test_get_losses_for
def test_get_losses_for():
a = Input(shape=(2,))
dense_layer = Dense(1)
dense_layer.add_loss(0, inputs=a)
dense_layer.add_loss(1, inputs=None)
assert dense_layer.get_losses_for(a) == [0]
assert dense_layer.get_losses_for(None) == [1]
示例6: __build_network
def __build_network(self):
embedding_layer = Embedding(self.corpus_size,
EMBEDDING_DIM,
weights=[self.embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
# train a 1D convnet with global maxpooling
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
x = Convolution1D(self.num_filters, 5, activation="relu")(embedded_sequences)
x = MaxPooling1D(5)(x)
x = Convolution1D(self.num_filters, 5, activation="relu")(x)
x = MaxPooling1D(5)(x)
x = LSTM(64, dropout_W=0.2, dropout_U=0.2)(x)
preds = Dense(self.class_num, activation='softmax')(x)
print preds.get_shape()
rmsprop = RMSprop(lr=0.01)
self.model = Model(sequence_input, preds)
self.model.compile(loss='categorical_crossentropy', optimizer=rmsprop, metrics=['acc'])
示例7: get_ResNet_classifier
def get_ResNet_classifier():
inputs = Input((CLASSIFY_INPUT_WIDTH, CLASSIFY_INPUT_HEIGHT, CLASSIFY_INPUT_DEPTH, CLASSIFY_INPUT_CHANNEL))
x = conv_bn_relu(inputs, RESNET_INITIAL_FILTERS)
print('base')
print(x.get_shape())
for i in range(RESNET_BLOCKS):
x = bottleneck(x, shrinkage=(i % RESNET_SHRINKAGE_STEPS == 0))
print('top')
x = GlobalMaxPooling3D()(x)
print(x.get_shape())
x = Dense(2, activation='softmax')(x)
print(x.get_shape())
model = Model(inputs=inputs, outputs=x)
model.compile(optimizer=Adam(lr=TRAIN_CLASSIFY_LEARNING_RATE), loss='binary_crossentropy', metrics=['accuracy'])
return model
示例8: Input
recog_left.add(Dense(64,input_shape=(64,),activation='relu'))
recog_right=recog
recog_right.add(Dense(64,input_shape=(64,),activation='relu'))
recog_right.add(Lambda(lambda x: x + K.exp(x / 2) * K.random_normal(shape=(1, 64), mean=0.,
std=epsilon_std), output_shape=(64,)))
recog_right.add(Highway())
recog_right.add(Activation('sigmoid'))
recog1=Sequential()
recog1.add(Merge([recog_left,recog_right],mode = 'ave'))
recog1.add(Dense(784))
#### HERE***
recog11=Sequential()
layer=Dense(64,init='glorot_uniform',input_shape=(784,))
layer.trainable=False
recog11.add(layer)
layer2=Dense(784, activation='sigmoid',init='glorot_uniform')
layer2.trainable=False
recog11.add(layer2)
recog11.layers[0].W.set_value(np.ones((784,64)).astype(np.float32))
recog11.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['mae'])
recog11.get_weights()[0].shape
gan_input = Input(batch_shape=(1,784))
gan_level2 = recog11(recog1(gan_input))
示例9: test_node_construction
def test_node_construction():
####################################################
# test basics
a = Input(shape=(32,), name='input_a')
b = Input(shape=(32,), name='input_b')
assert a._keras_shape == (None, 32)
a_layer, a_node_index, a_tensor_index = a._keras_history
b_layer, b_node_index, b_tensor_index = b._keras_history
assert len(a_layer._inbound_nodes) == 1
assert a_tensor_index is 0
node = a_layer._inbound_nodes[a_node_index]
assert node.outbound_layer == a_layer
assert isinstance(node.inbound_layers, list)
assert node.inbound_layers == []
assert isinstance(node.input_tensors, list)
assert node.input_tensors == [a]
assert isinstance(node.input_masks, list)
assert node.input_masks == [None]
assert isinstance(node.input_shapes, list)
assert node.input_shapes == [(None, 32)]
assert isinstance(node.output_tensors, list)
assert node.output_tensors == [a]
assert isinstance(node.output_shapes, list)
assert node.output_shapes == [(None, 32)]
assert isinstance(node.output_masks, list)
assert node.output_masks == [None]
dense = Dense(16, name='dense_1')
a_2 = dense(a)
b_2 = dense(b)
assert len(dense._inbound_nodes) == 2
assert len(dense._outbound_nodes) == 0
assert dense._inbound_nodes[0].inbound_layers == [a_layer]
assert dense._inbound_nodes[0].outbound_layer == dense
assert dense._inbound_nodes[1].inbound_layers == [b_layer]
assert dense._inbound_nodes[1].outbound_layer == dense
assert dense._inbound_nodes[0].input_tensors == [a]
assert dense._inbound_nodes[1].input_tensors == [b]
assert dense._inbound_nodes[0].get_config()['inbound_layers'] == ['input_a']
assert dense._inbound_nodes[1].get_config()['inbound_layers'] == ['input_b']
# test layer properties
test_layer = Dense(16, name='test_layer')
a_test = test_layer(a)
assert K.int_shape(test_layer.kernel) == (32, 16)
assert test_layer.input == a
assert test_layer.output == a_test
assert test_layer.input_mask is None
assert test_layer.output_mask is None
assert test_layer.input_shape == (None, 32)
assert test_layer.output_shape == (None, 16)
with pytest.raises(AttributeError):
dense.input
with pytest.raises(AttributeError):
dense.output
with pytest.raises(AttributeError):
dense.input_mask
with pytest.raises(AttributeError):
dense.output_mask
assert dense.get_input_at(0) == a
assert dense.get_input_at(1) == b
assert dense.get_output_at(0) == a_2
assert dense.get_output_at(1) == b_2
assert dense.get_input_shape_at(0) == (None, 32)
assert dense.get_input_shape_at(1) == (None, 32)
assert dense.get_output_shape_at(0) == (None, 16)
assert dense.get_output_shape_at(1) == (None, 16)
assert dense.get_input_mask_at(0) is None
assert dense.get_input_mask_at(1) is None
assert dense.get_output_mask_at(0) is None
assert dense.get_output_mask_at(1) is None
示例10: Attention
class Attention(Model):
"""Implements standard attention.
Given some memory, a memory mask and a query, outputs the weighted memory cells.
"""
def __init__(self, memory_cells, query, project_query=False):
"""Define Attention.
Args:
memory_cells (SequenceBatch): a SequenceBatch containing a Tensor of shape (batch_size, num_cells, cell_dim)
query (Tensor): a tensor of shape (batch_size, query_dim).
project_query (bool): defaults to False. If True, the query goes through an extra projection layer to
coerce it to cell_dim.
"""
cell_dim = memory_cells.values.get_shape().as_list()[2]
if project_query:
# project the query up/down to cell_dim
self._projection_layer = Dense(cell_dim, activation='linear')
query = self._projection_layer(query) # (batch_size, cand_dim)
memory_values, memory_mask = memory_cells.values, memory_cells.mask
# batch matrix multiply to compute logit scores for all choices in all batches
query = tf.expand_dims(query, 2) # (batch_size, cell_dim, 1)
logit_values = tf.batch_matmul(memory_values, query) # (batch_size, num_cells, 1)
logit_values = tf.squeeze(logit_values, [2]) # (batch_size, num_cells)
# set all pad logits to negative infinity
logits = SequenceBatch(logit_values, memory_mask)
logits = logits.with_pad_value(-float('inf'))
# normalize to get probs
probs = tf.nn.softmax(logits.values) # (batch_size, num_cells)
retrieved = tf.batch_matmul(tf.expand_dims(probs, 1), memory_values) # (batch_size, 1, cell_dim)
retrieved = tf.squeeze(retrieved, [1]) # (batch_size, cell_dim)
self._logits = logits.values
self._probs = probs
self._retrieved = retrieved
@property
def logits(self):
return self._logits # (batch_size, num_cells)
@property
def probs(self):
return self._probs # (batch_size, num_cells)
@property
def retrieved(self):
return self._retrieved # (batch_size, cell_dim)
@property
def projection_weights(self):
"""Get projection weights.
Returns:
(np.array, np.array): a pair of numpy arrays, (W, b) used to project the query tensor to
match the predicate embedding dimension.
"""
return self._projection_layer.get_weights()
@projection_weights.setter
def projection_weights(self, value):
W, b = value
self._projection_layer.set_weights([W, b])
示例11: lstm_layer
_y1 = lstm_layer(embedded_sequences_2)
y1 = lstm_layer2(_y1)
merged = concatenate([x1, y1])
merged = Dropout(rate_drop_dense)(merged)
merged = BatchNormalization()(merged)
merged = Dense(num_dense, activation=act)(merged)
merged = Dropout(rate_drop_dense)(merged)
merged = Dense(num_dense, activation=act)(merged)
merged = Dropout(rate_drop_dense)(merged)
merged = BatchNormalization()(merged)
preds = Dense(1, activation='sigmoid')(merged)
########################################
## add class weight
########################################
if re_weight:
class_weight = {0: 1.309028344, 1: 0.472001959}
else:
class_weight = None
########################################
## train the model
########################################
model = Model(inputs=[sequence_1_input, sequence_2_input], \
outputs=preds)
model.compile(loss='binary_crossentropy',
示例12: add_top_layers
def add_top_layers(model, image_size, patch_net='resnet50', block_type='resnet',
depths=[512,512], repetitions=[1,1],
block_fn=bottleneck_org, nb_class=2,
shortcut_with_bn=True, bottleneck_enlarge_factor=4,
dropout=.0, weight_decay=.0001,
add_heatmap=False, avg_pool_size=(7,7), return_heatmap=False,
add_conv=True, add_shortcut=False,
hm_strides=(1,1), hm_pool_size=(5,5),
fc_init_units=64, fc_layers=2):
def add_residual_blocks(block):
for depth,repetition in zip(depths, repetitions):
block = _residual_block(
block_fn, depth, repetition,
dropout=dropout, weight_decay=weight_decay,
shortcut_with_bn=shortcut_with_bn,
bottleneck_enlarge_factor=bottleneck_enlarge_factor)(block)
pool = GlobalAveragePooling2D()(block)
dropped = Dropout(dropout)(pool)
return dropped
def add_vgg_blocks(block):
for depth,repetition in zip(depths, repetitions):
block = _vgg_block(depth, repetition,
dropout=dropout,
weight_decay=weight_decay)(block)
pool = GlobalAveragePooling2D()(block)
dropped = Dropout(dropout)(pool)
return dropped
def add_fc_layers(block):
flattened = Flatten()(block)
dropped = Dropout(dropout)(flattened)
units=fc_init_units
for i in xrange(fc_layers):
fc = Dense(units, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(dropped)
norm = BatchNormalization()(fc)
relu = Activation('relu')(norm)
dropped = Dropout(dropout)(relu)
units /= 2
return dropped, flattened
if patch_net == 'resnet50':
last_kept_layer = model.layers[-5]
elif patch_net == 'yaroslav':
last_kept_layer = model.layers[-3]
else:
last_kept_layer = model.layers[-4]
block = last_kept_layer.output
channels = 1 if patch_net == 'yaroslav' else 3
image_input = Input(shape=(image_size[0], image_size[1], channels))
model0 = Model(inputs=model.inputs, outputs=block)
block = model0(image_input)
if add_heatmap or return_heatmap: # add softmax heatmap.
pool1 = AveragePooling2D(pool_size=avg_pool_size,
strides=hm_strides)(block)
if return_heatmap:
dropped = pool1
else:
dropped = Dropout(dropout)(pool1)
clf_layer = model.layers[-1]
clf_weights = clf_layer.get_weights()
clf_classes = clf_layer.output_shape[1]
if return_heatmap:
activation = activations.softmax(x, axis=CHANNEL_AXIS)
else:
activation = 'relu'
heatmap_layer = Dense(clf_classes, activation=activation,
kernel_regularizer=l2(weight_decay))
heatmap = heatmap_layer(dropped)
heatmap_layer.set_weights(clf_weights)
if return_heatmap:
model_heatmap = Model(inputs=image_input, outputs=heatmap)
return model_heatmap
block = MaxPooling2D(pool_size=hm_pool_size)(heatmap)
top_layer_nb = 8
else:
top_layer_nb = 2
if add_conv:
if block_type == 'resnet':
block = add_residual_blocks(block)
elif block_type == 'vgg':
block = add_vgg_blocks(block)
else:
raise Exception('Unsupported block type: ' + block_type)
else:
block, flattened = add_fc_layers(block)
if add_shortcut and not add_conv:
dense = Dense(nb_class, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(block)
shortcut = Dense(nb_class, kernel_initializer="he_normal",
kernel_regularizer=l2(weight_decay))(flattened)
addition = add([dense, shortcut])
dense = Activation('softmax')(addition)
else:
dense = Dense(nb_class, kernel_initializer="he_normal",
activation='softmax',
kernel_regularizer=l2(weight_decay))(block)
model_addtop = Model(inputs=image_input, outputs=dense)
#.........這裏部分代碼省略.........
示例13: pop_layer
model.add(Dropout(0.5,trainable='False'))
model.add(Dense(10,trainable='False'))
model.add(Activation('softmax',trainable='False'))
# LOADING WEIGHTS TO FINE-TUNNE THEM
model.load_weights(weights_path)
pop_layer(model)
pop_layer(model)
# for layer in model.layers:
# layer.trainable= False
nb_classes=13
layer_last=Dense(nb_classes)
layer_last.trainable=True
layer_last2=Activation('softmax')
layer_last2.trainable=True
model.add(layer_last)
model.add(layer_last2)
print(model.summary())
# let's train the model using SGD + momentum (how original).
#sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer="sgd",
示例14: Sequential
###Test parameters:
sample_width = 5
nb_train_samples = 20000
nb_test_samples = 1000
###Making the layers:
labels = tf.placeholder(tf.float32, shape=(None,1))
features = tf.placeholder(tf.float32, shape=(None,sample_width))
from keras.models import Sequential
from keras.layers import Dense
import random
model = Sequential()
first_layer = Dense(20, activation='sigmoid', input_shape=(None,sample_width))
first_layer.set_input(features)
model.add(first_layer)
model.add(Dense(1, activation='sigmoid'))
output_layer = model.output
###making training data & test data:
train_features = np.random.randn(nb_train_samples, sample_width)
train_labels = np.zeros(nb_train_samples).reshape(nb_train_samples, 1)
test_features = np.random.randn(nb_test_samples, sample_width)
test_labels = np.zeros(nb_test_samples).reshape(nb_test_samples, 1)
train_ones = 0
test_ones = 0
示例15: Input
recog_right=recog
recog_right.add(Dense(64,input_shape=(64,),activation='relu'))
recog_right.add(Lambda(lambda x: x + K.exp(x / 2) * K.random_normal(shape=(1, 64), mean=0.,
std=epsilon_std), output_shape=(64,)))
recog_right.add(Highway())
recog_right.add(Activation('sigmoid'))
recog1=Sequential()
recog1.add(Merge([recog_left,recog_right],mode = 'ave'))
recog1.add(Dense(784))
recog1.add(Activation('relu'))
#### GATE***
recog11=Sequential()
layer=Dense(2,init='glorot_uniform',input_shape=(784,))
layer.trainable=False
recog11.add(layer)
layer2=Dense(784, activation='sigmoid',init='glorot_uniform')
layer2.trainable=True
recog11.add(layer2)
recog11.layers[0].W.set_value(np.ones((784,2)).astype(np.float32))
recog11.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['mae'])
recog11.get_weights()[0].shape
gan_input = Input(batch_shape=(1,784))
gan_level2 = recog11(recog1(gan_input))