當前位置: 首頁>>代碼示例>>Python>>正文


Python RoiManager.reset方法代碼示例

本文整理匯總了Python中ij.plugin.frame.RoiManager.reset方法的典型用法代碼示例。如果您正苦於以下問題:Python RoiManager.reset方法的具體用法?Python RoiManager.reset怎麽用?Python RoiManager.reset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ij.plugin.frame.RoiManager的用法示例。


在下文中一共展示了RoiManager.reset方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: RoiManager

# 需要導入模塊: from ij.plugin.frame import RoiManager [as 別名]
# 或者: from ij.plugin.frame.RoiManager import reset [as 別名]
    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))


    #----------------
    # Display results
    #----------------

    # The feature model, that stores edge and track features.
    fm = model.getFeatureModel()
    rm = RoiManager.getInstance()
    if not rm:
          rm = RoiManager()
    rm.reset()
    nextRoi = 0

    for id in model.getTrackModel().trackIDs(True):

        # Fetch the track feature from the feature model.
        v = fm.getTrackFeature(id, 'TRACK_MEAN_SPEED')
        v1 = fm.getTrackFeature(id, TrackBranchingAnalyzer.NUMBER_SPLITS)

        if (v1>0):
            model.getLogger().log('')
            model.getLogger().log('Track ' + str(id) + ': branching = ' + str(v1))
            track = model.getTrackModel().trackSpots(id)
            sortedTrack = list( track )
            Collections.sort( sortedTrack, Spot.frameComparator )
開發者ID:bramalingam,項目名稱:Omero-Imagej-Scripts,代碼行數:31,代碼來源:Mitotic_Tracker_Final.py

示例2: main

# 需要導入模塊: from ij.plugin.frame import RoiManager [as 別名]
# 或者: from ij.plugin.frame.RoiManager import reset [as 別名]
def main():

    # Get active dataset
    #img = IJ.getImage()
    display = displayservice.getActiveDisplay()
    active_dataset = imagedisplayservice.getActiveDataset(display)

    if not active_dataset:
        IJ.showMessage('No image opened.')
        return

    # Get image path
    fname = active_dataset.getSource()
    dir_path = os.path.dirname(fname)

    if not fname:
        IJ.showMessage('Source image needs to match a file on the system.')
        return

    # Open ROIs
    rois = RoiManager.getInstance()
    if not rois:
        roi_path = os.path.join(dir_path, "RoiSet.zip")
        if not os.path.isfile(roi_path):
            try:
                roi_path = glob.glob(os.path.join(dir_path, "*.roi"))[0]
            except:
                roi_path = None

        if not roi_path:
            IJ.showMessage('No ROIs. Please use Analyze > Tools > ROI Manager...')
            return

        rois = RoiManager(True)
        rois.reset()
        rois.runCommand("Open", roi_path)

    IJ.log('Image filename is %s' % fname)
    dt = get_dt(active_dataset)

    rois_array = rois.getRoisAsArray()
    for i, roi in enumerate(rois_array):

        crop_id = i + 1
        IJ.log("Croping %i / %i" % (crop_id, len(rois_array)))

        # Get filename and basename of the current cropped image
        crop_basename = "crop%i_%s" % (crop_id, active_dataset.getName())
        crop_basename = os.path.splitext(crop_basename)[0] + ".ome.tif"
        crop_fname = os.path.join(os.path.dirname(fname), crop_basename)

        # Get bounds and crop
        bounds = roi.getBounds()
        dataset = crop(ij, datasetservice, active_dataset,
                       bounds.x, bounds.y, bounds.width,
                       bounds.height, crop_basename)

        # Show cropped image
        ij.ui().show(dataset.getName(), dataset)

        # Save cropped image (ugly hack)
        IJ.log("Saving crop to %s" % crop_fname)

        imp = IJ.getImage()
        bfExporter = LociExporter()
        macroOpts = "save=[" + crop_fname + "]"
        bfExporter.setup(None, imp)
        Macro.setOptions(macroOpts)
        bfExporter.run(None)

        imp.close()

    IJ.log('Done')
開發者ID:pombredanne,項目名稱:fiji_tools,代碼行數:75,代碼來源:Crop_Multi_Roi.py

示例3: segmentation

# 需要導入模塊: from ij.plugin.frame import RoiManager [as 別名]
# 或者: from ij.plugin.frame.RoiManager import reset [as 別名]
def segmentation(imp, spot_data, channel, diameter_init, ES_tolerance, ES_area_max, ES_ctrl_pts, ES_iteration, repeat_max):
    # Open files
    cal = imp.getCalibration()
    manager = RoiManager.getInstance()
    if manager is None:
        manager = RoiManager()
    # Prepare log files for output
    options = IS.MEDIAN | IS.AREA | IS.MIN_MAX | IS.CENTROID | IS.PERIMETER | IS.ELLIPSE | IS.SKEWNESS
    convergence = []
    Sintensity = []
    for spot in spot_data:
        repeat = 0
        flag = False
        spotID = int(spot[0])
        Xcenter = (float(spot[1]) / cal.pixelWidth)
        Ycenter = (float(spot[2]) / cal.pixelHeight)
        Quality = float(spot[3])
        diameter_init = float(spot[4] / cal.pixelWidth) * 2.0
        while True:
            manager = RoiManager.getInstance()
            if manager is None:
                manager = RoiManager()
            Xcurrent = int(Xcenter - diameter_init / 2.0)
            Ycurrent = int(Ycenter - diameter_init / 2.0)
            Dcurrent1 = int(diameter_init * (1.2 - repeat / 10.0))
            Dcurrent2 = int(diameter_init * (0.8 + repeat / 10.0))
            roi = OvalRoi(Xcurrent, Ycurrent, Dcurrent1, Dcurrent2)
            imp.setPosition(channel)
            imp.setRoi(roi)
            Esnake_options1 = "target_brightness=Bright control_points=" + \
                str(ES_ctrl_pts) + " gaussian_blur=0 "
            Esnake_options2 = "energy_type=Contour alpha=2.0E-5 max_iterations=" + \
                str(ES_iteration) + " immortal=false"
            IJ.run(imp, "E-Snake", Esnake_options1 + Esnake_options2)
            roi_snake = manager.getRoisAsArray()
            roi_ind = len(roi_snake) - 1
            stats = IS.getStatistics(
                imp.getProcessor(), options, imp.getCalibration())
            perimeter = roi_snake[roi_ind].getLength() * cal.pixelWidth
            circularity = 4.0 * 3.1417 * (stats.area / (perimeter * perimeter))
            if stats.area > 17.0 and stats.area < ES_area_max and stats.skewness < -0.01 and circularity > 0.01 and stats.minor > 2.0 and boundaries(Xcenter, Ycenter, stats.xCentroid / cal.pixelWidth, stats.yCentroid / cal.pixelHeight, ES_tolerance):
                Sintensity = stats.median
                convergence.append(True)
                break
            if stats.median > 6000 and stats.area > 17.0 and stats.area < ES_area_max:
                Sintensity = stats.median
                convergence.append(True)
                break
            elif repeat > repeat_max:
                manager.select(imp, roi_ind)
                manager.runCommand(imp, 'Delete')
                roi = OvalRoi(Xcenter + 1.0 - diameter_init / 2.0, Ycenter +
                              1.0 - diameter_init / 2.0, diameter_init, diameter_init)
                imp.setRoi(roi)
                manager.add(imp, roi, spotID)
                roi_snake.append(roi)
                stats = IS.getStatistics(
                    imp.getProcessor(), options, imp.getCalibration())
                Sintensity = stats.median
                convergence.append(False)
                break
            else:
                IJ.log('Area=' + str(stats.area) + '  Skewness=' + str(stats.skewness) +
                       ' circularity=' + str(circularity) + ' Minor=' + str(stats.minor))
                manager.select(imp, roi_ind)
                manager.runCommand(imp, 'Delete')
                repeat += 1
        # End Spot-segmentation
    # End all Spots-segmentation
    manager.runCommand(imp, 'Show All')
    imp.setPosition(channel)
    color = imp.createImagePlus()
    ip = imp.getProcessor().duplicate()
    color.setProcessor("segmentation" + str(channel), ip)
    color.show()
    IJ.selectWindow("segmentation" + str(channel))
    manager.moveRoisToOverlay(color)
    spot_optimal = manager.getRoisAsArray()
    manager.reset()
    for i in xrange(0, len(spot_optimal)):
        spot = spot_optimal[i]
        spot.setStrokeWidth(2)
        if convergence[i]:
            spot.setStrokeColor(Color.GREEN)
        else:
            spot.setStrokeColor(Color.MAGENTA)
        imp.setRoi(spot)
        manager.add(imp, spot, i)
    manager.runCommand(imp, 'Show All')
    imp.setPosition(channel)
開發者ID:jpabbuehl,項目名稱:CSC_submission,代碼行數:92,代碼來源:processing_exemple.py

示例4: channel_segmentation

# 需要導入模塊: from ij.plugin.frame import RoiManager [as 別名]
# 或者: from ij.plugin.frame.RoiManager import reset [as 別名]
def channel_segmentation(infile, diameter, tolerance, repeat_max, Zrepeat=10):
    # ROI optimization by Esnake optimisation
    default_options = "stack_order=XYCZT color_mode=Grayscale view=Hyperstack"
    IJ.run("Bio-Formats Importer", default_options + " open=[" + infile + "]")
    imp = IJ.getImage()
    cal = imp.getCalibration()
    channels = [i for i in xrange(1, imp.getNChannels() + 1)]

    log = filename(infile)
    log = re.sub('.ids', '.csv', log)
    XZdrift, YZdrift = retrieve_Zdrift(log)
    XZpt = [i * imp.getWidth() / Zrepeat for i in xrange(1, Zrepeat - 1)]
    YZpt = [i * imp.getHeight() / Zrepeat for i in xrange(1, Zrepeat - 1)]

    # Prepare head output file
    for ch in channels:
        csv_name = 'ch' + str(ch) + log
        with open(os.path.join(folder6, csv_name), 'wb') as outfile:
            SegLog = csv.writer(outfile, delimiter=',')
            SegLog.writerow(['spotID', 'Xpos', 'Ypos', 'Zpos',
                             'Quality', 'area', 'intensity', 'min', 'max', 'std'])

    # Retrieve seeds from SpotDetector
    options = IS.MEDIAN | IS.AREA | IS.MIN_MAX | IS.CENTROID
    spots = retrieve_seeds(log)
    for ch in channels:
        for spot in spots:
            repeat = 0
            # Spots positions are given according to calibration, need to
            # convert it to pixel coordinates
            spotID = int(spot[0])
            Xcenter = int(float(spot[2]) / cal.pixelWidth)
            Ycenter = int(float(spot[3]) / cal.pixelHeight)
            Zcenter = float(spot[4]) / cal.pixelDepth
            Quality = float(spot[5])
            # find closest grid location in Zdrift matrix
            Xpt = min(range(len(XZpt)), key=lambda i: abs(XZpt[i] - Xcenter))
            Ypt = min(range(len(YZpt)), key=lambda i: abs(YZpt[i] - Ycenter))
            # Calculate Z position according to SpotZ, calibration and
            # channel-specific Zdrift #
            Zshift = median([float(XZdrift[Xpt][ch - 1]),
                             float(YZdrift[Ypt][ch - 1])]) / cal.pixelDepth
            correctZ = int(Zcenter - Zshift)
            imp.setPosition(ch, correctZ, 1)
            imp.getProcessor().setMinAndMax(0, 3000)
            while True:
                manager = RoiManager.getInstance()
                if manager is None:
                    manager = RoiManager()
                roi = OvalRoi(Xcenter - diameter * (1.0 + repeat / 10.0) / 2.0, Ycenter - diameter * (
                    1.0 + repeat / 10.0) / 2.0, diameter * (1.0 + repeat / 10.0), diameter * (1.0 + repeat / 10.0))
                imp.setRoi(roi)
                IJ.run(imp, "E-Snake", "target_brightness=Bright control_points=3 gaussian_blur=0 energy_type=Mixture alpha=2.0E-5 max_iterations=20 immortal=false")
                roi_snake = manager.getRoisAsArray()[0]
                imp.setRoi(roi_snake)
                stats = IS.getStatistics(
                    imp.getProcessor(), options, imp.getCalibration())
                manager.reset()
                if stats.area > 20.0 and stats.area < 150.0 and boundaries(Xcenter, Ycenter, stats.xCentroid / cal.pixelWidth, stats.yCentroid / cal.pixelHeight, tolerance):
                    Sarea = stats.area
                    Sintensity = stats.median
                    Smin = stats.min
                    Smax = stats.max
                    Sstd = stats.stdDev
                    break
                elif repeat > repeat_max:
                    roi = OvalRoi(Xcenter - diameter / 2.0,
                                  Ycenter - diameter / 2.0, diameter, diameter)
                    imp.setRoi(roi)
                    manager.add(imp, roi, i)
                    stats = IS.getStatistics(
                        imp.getProcessor(), options, imp.getCalibration())
                    Sarea = stats.area
                    Sintensity = stats.median
                    Smin = stats.min
                    Smax = stats.max
                    Sstd = stats.stdDev
                    break
                else:
                    repeat += 1
            # Save results
            csv_name = 'ch' + str(ch) + log
            with open(os.path.join(folder6, csv_name), 'ab') as outfile:
                SegLog = csv.writer(outfile, delimiter=',')
                SegLog.writerow([spotID, Xcenter, Ycenter, correctZ,
                                 Quality, Sarea, Sintensity, Smin, Smax, Sstd])
            # End spot optimization
        # End spots
    # End channels
    IJ.selectWindow(filename(infile))
    IJ.run("Close")
開發者ID:jpabbuehl,項目名稱:CSC_submission,代碼行數:93,代碼來源:lightsheet_data_processing.py


注:本文中的ij.plugin.frame.RoiManager.reset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。