當前位置: 首頁>>代碼示例>>Python>>正文


Python Spectrum.smooth_tv方法代碼示例

本文整理匯總了Python中hyperspy._signals.spectrum.Spectrum.smooth_tv方法的典型用法代碼示例。如果您正苦於以下問題:Python Spectrum.smooth_tv方法的具體用法?Python Spectrum.smooth_tv怎麽用?Python Spectrum.smooth_tv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hyperspy._signals.spectrum.Spectrum的用法示例。


在下文中一共展示了Spectrum.smooth_tv方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: blind_source_separation

# 需要導入模塊: from hyperspy._signals.spectrum import Spectrum [as 別名]
# 或者: from hyperspy._signals.spectrum.Spectrum import smooth_tv [as 別名]
    def blind_source_separation(self,
                                number_of_components=None,
                                algorithm='sklearn_fastica',
                                diff_order=1,
                                factors=None,
                                comp_list=None,
                                mask=None, 
                                on_loadings=False,
                                pretreatment=None,
                                **kwargs):
        """Blind source separation (BSS) on the result on the 
        decomposition.

        Available algorithms: FastICA, JADE, CuBICA, and TDSEP

        Parameters
        ----------
        number_of_components : int
            number of principal components to pass to the BSS algorithm
        algorithm : {FastICA, JADE, CuBICA, TDSEP}
        diff_order : int
            Sometimes it is convenient to perform the BSS on the derivative 
            of the signal. If diff_order is 0, the signal is not differentiated.
        factors : numpy.array
            Factors to decompose. If None, the BSS is performed on the result
            of a previous decomposition.
        comp_list : boolen numpy array
            choose the components to use by the boolean list. It permits
             to choose non contiguous components.
        mask : numpy boolean array with the same dimension as the signal
            If not None, the signal locations marked as True (masked) will 
            not be passed to the BSS algorithm.
        on_loadings : bool
            If True, perform the BSS on the loadings of a previous 
            decomposition. If False, performs it on the factors.
        pretreatment: dict
        
        **kwargs : extra key word arguments
            Any keyword arguments are passed to the BSS algorithm.
        
        """
        target=self.learning_results                
        if not hasattr(target, 'factors') or target.factors==None:
            raise AttributeError(
                'A decomposition must be performed before blind '
                'source seperation or factors must be provided.')
        else:
            if factors is None:
                if on_loadings:
                    factors = target.loadings
                else:
                    factors = target.factors
            bool_index = np.zeros((factors.shape[0]), dtype = 'bool')
            if number_of_components is not None:
                bool_index[:number_of_components] = True
            else:
                if target.output_dimension is not None:
                    number_of_components = target.output_dimension
                    bool_index[:number_of_components] = True

            if comp_list is not None:
                for ifactors in comp_list:
                    bool_index[ifactors] = True
                number_of_components = len(comp_list)
            factors = factors[:,bool_index]
                    
            if pretreatment is not None:
                from hyperspy._signals.spectrum import Spectrum
                sfactors = Spectrum(factors.T)
                if pretreatment['algorithm'] == 'savitzky_golay':
                    sfactors.smooth_savitzky_golay(
                        number_of_points=pretreatment[
                                'number_of_points'],
                        polynomial_order=pretreatment[
                                'polynomial_order'],
                        differential_order = diff_order)
                if pretreatment['algorithm'] == 'tv':
                    sfactors.smooth_tv(
                        smoothing_parameter= pretreatment[
                            'smoothing_parameter'],
                        differential_order = diff_order)
                factors = sfactors.data.T
                if pretreatment['algorithm'] == 'butter':
                    b, a = sp.signal.butter(pretreatment['order'],
                        pretreatment['cutoff'], pretreatment['type'])
                    for i in range(factors.shape[1]):
                        factors[:,i] = sp.signal.filtfilt(b,a,
                            factors[:,i])
            elif diff_order > 0:
                factors = np.diff(factors, diff_order, axis=0)
                    
            if mask is not None:
                factors = factors[~mask]

            # first center and scale the data
            factors,invsqcovmat = centering_and_whitening(factors)
            if algorithm == 'orthomax':
                _, unmixing_matrix = orthomax(factors, **kwargs)
                unmixing_matrix = unmixing_matrix.T
            
#.........這裏部分代碼省略.........
開發者ID:mfm24,項目名稱:hyperspy,代碼行數:103,代碼來源:mva.py


注:本文中的hyperspy._signals.spectrum.Spectrum.smooth_tv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。