本文整理匯總了Python中glove.Glove.save方法的典型用法代碼示例。如果您正苦於以下問題:Python Glove.save方法的具體用法?Python Glove.save怎麽用?Python Glove.save使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類glove.Glove
的用法示例。
在下文中一共展示了Glove.save方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import save [as 別名]
def main():
corpus_model = Corpus()
corpus_model = Corpus.load('bioc-corpus-AZ2.model')
glove = Glove(no_components=100, learning_rate=0.05)
glove.fit(corpus_model.matrix, epochs=10, no_threads=16, verbose=True)
glove.add_dictionary(corpus_model.dictionary)
glove.save('bioc-glove-AZ2.model')
示例2: pretrain
# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import save [as 別名]
def pretrain(self,data_src):
if not os.path.isfile("glove.model"):
data_src = DataClean([
["[^a-z]"," "], # only letters
[" [ ]+", " "], # remove extra spaces
],html_clean=True,split_words=True).fit(data_src).transform(data_src)
corpus_model = Corpus()
corpus_model.fit(data_src,window=self.window)
glove = Glove(no_components=self.num_features,learning_rate=self.learning_rate)
glove.fit(corpus_model.matrix,epochs=self.epochs,verbose=True)
glove.add_dictionary(corpus_model.dictionary)
glove.save("glove.model")
示例3: print
# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import save [as 別名]
print('Collocations: %s' % corpus_model.matrix.nnz)
if args.train:
# Train the GloVe model and save it to disk.
if not args.create:
# Try to load a corpus from disk.
print('Reading corpus statistics')
corpus_model = Corpus.load('corpus.model')
print('Dict size: %s' % len(corpus_model.dictionary))
print('Collocations: %s' % corpus_model.matrix.nnz)
print('Training the GloVe model')
glove = Glove(no_components=100, learning_rate=0.05)
glove.fit(corpus_model.matrix, epochs=int(args.train),
no_threads=args.parallelism, verbose=True)
glove.add_dictionary(corpus_model.dictionary)
glove.save('glove.model')
if args.query:
# Finally, query the model for most similar words.
if not args.train:
print('Loading pre-trained GloVe model')
glove = Glove.load('glove.model')
print('Querying for %s' % args.query)
pprint.pprint(glove.most_similar(args.query, number=10))
示例4: Glove
# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import save [as 別名]
@author: dannl
'''
from glove import Glove
from glove import Corpus
import time
cooc_file='/home/dannl/tmp/newstech/glove/word.cooc'
model_file='/home/dannl/tmp/newstech/glove/glove.model'
oldtime=time.time()
# get a cooccurrence matrix
corpus_cooc = Corpus.load(cooc_file)
# get a model
glove = Glove(no_components=100, learning_rate=0.05)
glove.fit(corpus_cooc.matrix, epochs=5,no_threads=4, verbose=True)
glove.add_dictionary(corpus_cooc.dictionary)
glove.save(model_file)
# count=0
# for word,wid in corpus_cooc.dictionary.items():
# count+=1
# if count>100:
# break
# print word,wid
print('Dict size: %s' % len(corpus_cooc.dictionary))
print('Collocations: %s' % corpus_cooc.matrix.nnz)
print 'time cost:%.2f'%(time.time()-oldtime)
示例5: print
# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import save [as 別名]
corpus = Corpus.load("cache/corpus.p")
except:
print("Training corpus...")
corpus.fit(texts, window=max_sentence_length)
corpus.save("cache/corpus.p")
glove = Glove(no_components=number_components, learning_rate=0.05)
try:
print("Loading pretrained GloVe vectors...")
glove = Glove.load("cache/glove.p")
except:
print("Training GloVe vectors...")
# More epochs seems to make it worse
glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True)
glove.add_dictionary(corpus.dictionary)
glove.save("cache/glove.p")
# Convert input text
print("Vectorizing input sentences...")
X = vectify(texts, previous_message, glove.dictionary, max_sentence_length, contextual)
y = np.array([x == u'1' for x in classes]).astype(np.int32)
X, y, texts = X[:207458], y[:207458], texts[:207458]
def print_accurate_forwards(net, history):
X_train, X_valid, y_train, y_valid = net.train_split(X, y, net)
y_classified = net.predict(X_valid)
acc_fwd = np.mean([x == y_ and y_ == 1 for x, y_ in zip(y_valid, y_classified)])/np.mean(y_valid)
fls_pos = np.mean([x != y_ and y_ == 0 for x, y_ in zip(y_classified, y_valid)])/(np.mean(y_valid))
print('Accurately forwarded: {:.4f}'.format(acc_fwd) + ', False Positives: {:.4f}'.format(fls_pos) + ', Valid forwards: {:.4f}'.format((acc_fwd / (acc_fwd + fls_pos))) )