當前位置: 首頁>>代碼示例>>Python>>正文


Python Glove.load方法代碼示例

本文整理匯總了Python中glove.Glove.load方法的典型用法代碼示例。如果您正苦於以下問題:Python Glove.load方法的具體用法?Python Glove.load怎麽用?Python Glove.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在glove.Glove的用法示例。


在下文中一共展示了Glove.load方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
def get_model():
    ''' lazy initialization for glove model so it works in pool '''
    global model
    if model == None:
        print 'loading the glove model...'
        model = Glove.load('w2v/glove_lemma_stopwords')
    return model
開發者ID:alexeygrigorev,項目名稱:avito-duplicates-kaggle,代碼行數:9,代碼來源:calculate_glove_features.py

示例2: __init__

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
 def __init__(self,data_src,num_features=100,window=10,learning_rate=0.05,epochs=10):
     self.learning_rate = learning_rate
     self.num_features = num_features
     self.window = window
     self.epochs = epochs
     self.pretrain(data_src)
     self.model = Glove.load("glove.model")
開發者ID:saatvikshah1994,項目名稱:SmartMM,代碼行數:9,代碼來源:gloveavgvec.py

示例3: get_data

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
def get_data(args):

    feature_set_names = CONFIG['train']['features']
    if set(feature_set_names).intersection(['word2vec', 'doc2vec']) and not args.embedding:
        raise RuntimeError("--embedding argument must be supplied")

    # get Y labels
    training_set = read_tsv(args.train)
    y_labels = training_set["sentiment"]

    sentences = [obj['review'] for obj in read_json_lines(args.sentences)]

    if not args.embedding or feature_set_names == ['bow']:
        # don't drop NaNs -- have a sparse matrix here
        return False, (get_bow_features(sentences), y_labels)

    # load embedding
    if CONFIG['pretrain']['algorithm'] == 'word2vec':
        embedding = word2vec.Word2Vec.load(args.embedding)
    elif CONFIG['pretrain']['algorithm'] == 'glove':
        embedding = Glove.load(args.embedding)
        # dynamicaly add GloveWrapper mixin
        embedding.__class__ = type('MyGlove', (Glove, GloveWrapper), {})

    # get feature vectors
    if 'doc2vec' in CONFIG['train']['features']:
        embedding_vectors = get_doc2vec_features(sentences, embedding)
    elif 'word2vec' in CONFIG['train']['features']:
        embedding_vectors = get_word2vec_features(sentences, embedding)
    else:
        raise RuntimeError("Invalid config setting train:features=%s" % CONFIG['train']['features'])

    if 'bow' in feature_set_names:
        return True, get_mixed_features(sentences, embedding_vectors, y_labels)
    else:
        # matrix is dense -- drop NaNs
        return False, drop_nans(embedding_vectors, y_labels)
開發者ID:Livefyre,項目名稱:flaubert,代碼行數:39,代碼來源:train.py

示例4: get_data

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
def get_data(args):

    feature_set_names = CONFIG['train']['features']
    if set(feature_set_names).intersection(['embedding']) and not args.embedding:
        raise RuntimeError("--embedding argument must be supplied")

    # get input data
    sentences, y_labels = sample_by_y(args)

    if not args.embedding or feature_set_names == ['bow']:
        # don't drop NaNs -- have a sparse matrix here
        X = get_bow_features(sentences)
        return False, (X, y_labels)

    # load embedding
    if CONFIG['pretrain']['algorithm'] == 'word2vec':
        from gensim.models import word2vec
        embedding = word2vec.Word2Vec.load(args.embedding)
    elif CONFIG['pretrain']['algorithm'] == 'glove':
        from glove import Glove
        embedding = Glove.load(args.embedding)
        # dynamicaly add GloveWrapper mixin
        embedding.__class__ = type('MyGlove', (Glove, GloveWrapper), {})

    # get feature vectors
    if 'embedding' in CONFIG['train']['features']:
        embedding_vectors = get_word2vec_features(sentences, embedding)
    else:
        raise RuntimeError("Invalid config setting train:features=%s" % CONFIG['train']['features'])

    if 'bow' in feature_set_names:
        X, y_labels = get_mixed_features(sentences, embedding_vectors, y_labels)
        return True, (X, y_labels)
    else:
        # matrix is dense -- drop NaNs
        X, y_labels = drop_nans(embedding_vectors, y_labels)
        return False, (X, y_labels)
開發者ID:escherba,項目名稱:flaubert,代碼行數:39,代碼來源:train.py

示例5: loadGloveModel

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
	def loadGloveModel(self, modelFile = MODEL_FILE):
		print("Loading pre-trained GloVe model \"{}\"...").format(modelFile)
		self.glove = Glove.load(modelFile)
		print("Done loading.")
		print("")
開發者ID:integralhero,項目名稱:PaperPlusPlus,代碼行數:7,代碼來源:ppp_main.py

示例6: print

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
        print('Collocations: %s' % corpus_model.matrix.nnz)

    if args.train:
        # Train the GloVe model and save it to disk.

        if not args.create:
            # Try to load a corpus from disk.
            print('Reading corpus statistics')
            corpus_model = Corpus.load('corpus.model')

            print('Dict size: %s' % len(corpus_model.dictionary))
            print('Collocations: %s' % corpus_model.matrix.nnz)

        print('Training the GloVe model')

        glove = Glove(no_components=100, learning_rate=0.05)
        glove.fit(corpus_model.matrix, epochs=int(args.train),
                  no_threads=args.parallelism, verbose=True)
        glove.add_dictionary(corpus_model.dictionary)

        glove.save('glove.model')

    if args.query:
        # Finally, query the model for most similar words.
        if not args.train:
            print('Loading pre-trained GloVe model')
            glove = Glove.load('glove.model')

        print('Querying for %s' % args.query)
        pprint.pprint(glove.most_similar(args.query, number=10))
開發者ID:mouhidine,項目名稱:glove-python,代碼行數:32,代碼來源:example.py

示例7: defaultdict

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
                        required=True,
                        help='The filename of the stored GloVe model.')
    parser.add_argument('--encode', '-e', action='store_true',
                        default=False,
                        help=('If True, words from the '
                              'evaluation set will be utf-8 encoded '
                              'before looking them up in the '
                              'model dictionary'))
    parser.add_argument('--parallelism', '-p', action='store',
                        default=1,
                        help=('Number of parallel threads to use'))

    args = parser.parse_args()

    # Load the GloVe model
    glove = Glove.load(args.model)


    if args.encode:
        encode = lambda words: [x.lower().encode('utf-8') for x in words]
    else:
        encode = lambda words: [unicode(x.lower()) for x in words]


    # Load the analogy task dataset. One example can be obtained at
    # https://word2vec.googlecode.com/svn/trunk/questions-words.txt
    sections = defaultdict(list)
    evaluation_words = [sections[section].append(encode(words)) for section, words in
                        metrics.read_analogy_file(args.test)]

    section_ranks = []
開發者ID:DevSinghSachan,項目名稱:glove-python,代碼行數:33,代碼來源:analogy_tasks_evaluation.py

示例8: fit

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
 def fit(self,X,y=None):
     self.model = Glove.load("glove.model")
     return self
開發者ID:saatvikshah1994,項目名稱:SmartMM,代碼行數:5,代碼來源:gloveavgvec.py

示例9: print

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
print("Max sentence length: {}, put that in settings.json.".format(max_sentence_length))

corpus = Corpus()
try:
    print("Loading pretrained corpus...")
    corpus = Corpus.load("cache/corpus.p")
except:
    print("Training corpus...")
    corpus.fit(texts, window=max_sentence_length)
    corpus.save("cache/corpus.p")

glove = Glove(no_components=number_components, learning_rate=0.05)
try:
    print("Loading pretrained GloVe vectors...")
    glove = Glove.load("cache/glove.p")
except:
    print("Training GloVe vectors...")
    # More epochs seems to make it worse
    glove.fit(corpus.matrix, epochs=30, no_threads=4, verbose=True)
    glove.add_dictionary(corpus.dictionary)
    glove.save("cache/glove.p")

# Convert input text
print("Vectorizing input sentences...")
X = vectify(texts, previous_message, glove.dictionary, max_sentence_length, contextual)
y = np.array([x == u'1' for x in classes]).astype(np.int32)

X, y, texts = X[:207458], y[:207458], texts[:207458]

def print_accurate_forwards(net, history):
開發者ID:feilen,項目名稱:morewell,代碼行數:32,代碼來源:chat_optimize.py

示例10: _get_wl_vec

# 需要導入模塊: from glove import Glove [as 別名]
# 或者: from glove.Glove import load [as 別名]
#-*- coding:utf-8 -*-
'''
Created on 2016-3-12

@author: dannl
'''
from glove import Glove
from glove import Corpus
import scipy
import numpy as np

model_file='/home/dannl/tmp/newstech/glove/glove.model'
cooc_file='/home/dannl/tmp/newstech/glove/word.cooc'

# corpus_coocc=Corpus.load(cooc_file)
model = Glove.load(model_file)

def _get_wl_vec(wordList):
    # wordList is a list of word:[word1,word2,...,wordn]
    total_vec=scipy.zeros(model.no_components)
    wordStr=' '.join(wordList)
    if isinstance(wordStr,unicode): # make sure word is utf-8 str type
        wordList=wordStr.encode('utf-8').split()
    for word in wordList:
        # make sure the word2vec model contain key 'word'        
        if model.dictionary.has_key(word):
            total_vec+=model.word_vectors[model.dictionary[word]]
    return total_vec

def getSimofNews(wordList1,wordList2):
    vec1=_get_wl_vec(wordList1)
開發者ID:JohnDannl,項目名稱:NewsTechNLP,代碼行數:33,代碼來源:glove2sim.py


注:本文中的glove.Glove.load方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。