當前位置: 首頁>>代碼示例>>Python>>正文


Python DatasetNetCDF.hasVariable方法代碼示例

本文整理匯總了Python中geodata.netcdf.DatasetNetCDF.hasVariable方法的典型用法代碼示例。如果您正苦於以下問題:Python DatasetNetCDF.hasVariable方法的具體用法?Python DatasetNetCDF.hasVariable怎麽用?Python DatasetNetCDF.hasVariable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在geodata.netcdf.DatasetNetCDF的用法示例。


在下文中一共展示了DatasetNetCDF.hasVariable方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: loadCFSR_TS

# 需要導入模塊: from geodata.netcdf import DatasetNetCDF [as 別名]
# 或者: from geodata.netcdf.DatasetNetCDF import hasVariable [as 別名]
def loadCFSR_TS(name=dataset_name, grid=None, varlist=None, varatts=None, resolution='hires', 
                filelist=None, folder=None, lautoregrid=None):
  ''' Get a properly formatted CFSR dataset with monthly mean time-series. '''
  if grid is None:
    # load from original time-series files 
    if folder is None: folder = orig_ts_folder
    # translate varlist
    if varatts is None: varatts = tsvaratts.copy()
    if varlist is None:
      if resolution == 'hires' or resolution == '03' or resolution == '031': varlist = varlist_hires
      elif resolution == 'lowres' or resolution == '05': varlist = varlist_lowres     
    if varlist and varatts: varlist = translateVarNames(varlist, varatts)
    if filelist is None: # generate default filelist
      if resolution == 'hires' or resolution == '03' or resolution == '031': 
        files = [hiresfiles[var] for var in varlist if var in hiresfiles]
      elif resolution == 'lowres' or resolution == '05': 
        files = [lowresfiles[var] for var in varlist if var in lowresfiles]
    # load dataset
    dataset = DatasetNetCDF(name=name, folder=folder, filelist=files, varlist=varlist, varatts=varatts, 
                            check_override=['time'], multifile=False, ncformat='NETCDF4_CLASSIC')
    # load static data
    if filelist is None: # generate default filelist
      if resolution == 'hires' or resolution == '03' or resolution == '031': 
        files = [hiresstatic[var] for var in varlist if var in hiresstatic]
      elif resolution == 'lowres' or resolution == '05': 
        files = [lowresstatic[var] for var in varlist if var in lowresstatic]
      # load constants, if any (and with singleton time axis)
      if len(files) > 0:
        staticdata = DatasetNetCDF(name=name, folder=folder, filelist=files, varlist=varlist, varatts=varatts, 
                                   axes=dict(lon=dataset.lon, lat=dataset.lat), multifile=False, 
                                   check_override=['time'], ncformat='NETCDF4_CLASSIC')
        # N.B.: need to override the axes, so that the datasets are consistent
        if len(staticdata.variables) > 0:
          for var in staticdata.variables.values(): 
            if not dataset.hasVariable(var.name):
              var.squeeze() # remove time dimension
              dataset.addVariable(var, copy=False) # no need to copy... but we can't write to the netcdf file!
    # replace time axis with number of month since Jan 1979 
    data = np.arange(0,len(dataset.time),1, dtype='int16') # month since 1979 (Jan 1979 = 0)
    timeAxis = Axis(name='time', units='month', coord=data, atts=dict(long_name='Month since 1979-01'))
    dataset.replaceAxis(dataset.time, timeAxis, asNC=False, deepcopy=False)
    # add projection  
    dataset = addGDALtoDataset(dataset, projection=None, geotransform=None, gridfolder=grid_folder)
    # N.B.: projection should be auto-detected as geographic
  else:
    # load from neatly formatted and regridded time-series files
    if folder is None: folder = avgfolder
    grid, resolution = checkGridRes(grid, resolution)
    dataset = loadObservations(name=name, folder=folder, projection=None, resolution=resolution, grid=grid, 
                               period=None, varlist=varlist, varatts=varatts, filepattern=tsfile, 
                               filelist=filelist, lautoregrid=lautoregrid, mode='time-series')
  # return formatted dataset
  return dataset
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:55,代碼來源:CFSR.py

示例2: computeClimatology

# 需要導入模塊: from geodata.netcdf import DatasetNetCDF [as 別名]
# 或者: from geodata.netcdf.DatasetNetCDF import hasVariable [as 別名]

#.........這裏部分代碼省略.........
        assert os.path.exists(expfolder)
        filepath = expfolder+filename
        tmpfilepath = expfolder+tmpfilename
        lskip = False # else just go ahead
        if os.path.exists(filepath): 
          if not loverwrite: 
            age = datetime.fromtimestamp(os.path.getmtime(filepath))
            # if sink file is newer than source file, skip (do not recompute)
            if age > sourceage and os.path.getsize(filepath) > 1e6: lskip = True
            # N.B.: NetCDF files smaller than 1MB are usually incomplete header fragments from a previous crash
            #print sourceage, age
          if not lskip: os.remove(filepath) 
        
        # depending on last modification time of file or overwrite setting, start computation, or skip
        if lskip:        
          # print message
          skipmsg =  "\n{:s}   >>>   Skipping: file '{:s}' in dataset '{:s}' already exists and is newer than source file.".format(pidstr,filename,dataset_name)
          skipmsg += "\n{:s}   >>>   ('{:s}')\n".format(pidstr,filepath)
          logger.info(skipmsg)              
        else:
           
          ## begin actual computation
          beginmsg = "\n{:s}   <<<   Computing '{:s}' (d{:02d}) Climatology from {:s}".format(
                      pidstr,dataset_name,domain,periodstr)
          if griddef is None: beginmsg += "  >>>   \n" 
          else: beginmsg += " ('{:s}' grid)  >>>   \n".format(griddef.name)
          logger.info(beginmsg)
  
          ## actually load datasets
          if source is None:
            source = loadWRF_TS(experiment=experiment, filetypes=[filetype], domains=domain) # comes out as a tuple... 
          if not lparallel and ldebug: logger.info('\n'+str(source)+'\n')
  
          # prepare sink
          if os.path.exists(tmpfilepath): os.remove(tmpfilepath) # remove old temp files
          sink = DatasetNetCDF(name='WRF Climatology', folder=expfolder, filelist=[tmpfilename], atts=source.atts.copy(), mode='w')
          sink.atts.period = periodstr 
          
          # initialize processing
          if griddef is None: lregrid = False
          else: lregrid = True
          CPU = CentralProcessingUnit(source, sink, varlist=varlist, tmp=lregrid, feedback=ldebug) # no need for lat/lon
          
          # start processing climatology
          if shift != 0: 
            logger.info('{0:s}   (shifting climatology by {1:d} month, to start with January)   \n'.format(pidstr,shift))
          CPU.Climatology(period=period, offset=offset, shift=shift, flush=False)
          # N.B.: immediate flushing should not be necessary for climatologies, since they are much smaller!
          
          # reproject and resample (regrid) dataset
          if lregrid:
            CPU.Regrid(griddef=griddef, flush=True)
            logger.info('%s    ---   '+str(griddef.geotansform)+'   ---   \n'%(pidstr))              
          
          # sync temporary storage with output dataset (sink)
          CPU.sync(flush=True)
          
          # add Geopotential Height Variance
          if 'GHT_Var' in sink and 'Z_var' not in sink:
            data_array = ( sink['GHT_Var'].data_array - sink['Z'].data_array**2 )**0.5
            atts = dict(name='Z_var',units='m',long_name='Square Root of Geopotential Height Variance')
            sink += Variable(axes=sink['Z'].axes, data=data_array, atts=atts)
            
          # add (relative) Vorticity Variance
          if 'Vorticity_Var' in sink and 'zeta_var' not in sink:
            data_array = ( sink['Vorticity_Var'].data_array - sink['zeta'].data_array**2 )**0.5
            atts = dict(name='zeta_var',units='1/s',long_name='Square Root of Relative Vorticity Variance')
            sink += Variable(axes=sink['zeta'].axes, data=data_array, atts=atts)
            
          # add names and length of months
          sink.axisAnnotation('name_of_month', name_of_month, 'time', 
                              atts=dict(name='name_of_month', units='', long_name='Name of the Month'))        
          if not sink.hasVariable('length_of_month'):
            sink += Variable(name='length_of_month', units='days', axes=(sink.time,), data=days_per_month,
                          atts=dict(name='length_of_month',units='days',long_name='Length of Month'))
          
          # close... and write results to file
          sink.sync()
          sink.close()
          writemsg =  "\n{:s}   >>>   Writing to file '{:s}' in dataset {:s}".format(pidstr,filename,dataset_name)
          writemsg += "\n{:s}   >>>   ('{:s}')\n".format(pidstr,filepath)
          logger.info(writemsg)      
          # rename file to proper name
          if os.path.exists(filepath): os.remove(filepath) # remove old file
          os.rename(tmpfilepath,filepath) # this will overwrite the old file
          
          # print dataset
          if not lparallel and ldebug:
            logger.info('\n'+str(sink)+'\n')
          
          # clean up (not sure if this is necessary, but there seems to be a memory leak...   
          del sink, CPU; gc.collect() # get rid of these guys immediately
          
    # clean up and return
    if source is not None: source.unload(); del source
    # N.B.: source is only loaded once for all periods    

  # N.B.: garbage is collected in multi-processing wrapper as well
  # return
  return 0 # so far, there is no measure of success, hence, if there is no crash...
開發者ID:EdwardBetts,項目名稱:GeoPy,代碼行數:104,代碼來源:wrfavg.py

示例3: CentralProcessingUnit

# 需要導入模塊: from geodata.netcdf import DatasetNetCDF [as 別名]
# 或者: from geodata.netcdf.DatasetNetCDF import hasVariable [as 別名]
      # determine averaging interval
      offset = source.time.getIndex(period[0]-1979)/12 # origin of monthly time-series is at January 1979 
      # initialize processing
      CPU = CentralProcessingUnit(source, sink, tmp=True)
      
      # start processing climatology
      CPU.Climatology(period=period[1]-period[0], offset=offset, flush=False)
      
      # shift longitude axis by 180 degrees left (i.e. 0 - 360 -> -180 - 180)
      CPU.Shift(lon=-180, flush=False)
      
      # sync temporary storage with output (sink variable; do not flush!)
      CPU.sync(flush=False)

      # make new masks
      if sink.hasVariable('landmask'):
        sink.mask(sink.landmask, maskSelf=False, varlist=['snow','snowh','zs'], invert=True, merge=False)

      # add names and length of months
      sink.axisAnnotation('name_of_month', name_of_month, 'time', 
                          atts=dict(name='name_of_month', units='', long_name='Name of the Month'))
      #print '   ===   month   ===   '
#       sink += VarNC(sink.dataset, name='length_of_month', units='days', axes=(sink.time,), data=days_per_month,
#                     atts=dict(name='length_of_month',units='days',long_name='Length of Month'))
      
      # close...
      sink.sync()
      sink.close()
      # print dataset
      print('')
      print(sink)     
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:33,代碼來源:CFSR.py


注:本文中的geodata.netcdf.DatasetNetCDF.hasVariable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。