當前位置: 首頁>>代碼示例>>Python>>正文


Python netcdf.DatasetNetCDF類代碼示例

本文整理匯總了Python中geodata.netcdf.DatasetNetCDF的典型用法代碼示例。如果您正苦於以下問題:Python DatasetNetCDF類的具體用法?Python DatasetNetCDF怎麽用?Python DatasetNetCDF使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了DatasetNetCDF類的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: loadNARR_TS

def loadNARR_TS(name=dataset_name, grid=None, varlist=None, resolution=None, varatts=None, filelist=None, 
               folder=None, lautoregrid=None):
  ''' Get a properly formatted NARR dataset with monthly mean time-series. '''
  if grid is None:
    # load from original time-series files 
    if folder is None: folder = orig_ts_folder
    # translate varlist
    if varatts is None: varatts = tsvaratts.copy()
    if varlist is None: varlist = tsvarlist
    if varlist and varatts: varlist = translateVarNames(varlist, varatts)
    if filelist is None: # generate default filelist
      filelist = [orig_ts_file.format(special[var]) if var in special else orig_ts_file.format(var) for var in varlist 
                  if var not in nofile and var in varatts]
    # load dataset
    dataset = DatasetNetCDF(name=name, folder=folder, filelist=filelist, varlist=varlist, varatts=varatts, 
                            atts=projdict, multifile=False, ncformat='NETCDF4_CLASSIC')
    # replace time axis with number of month since Jan 1979 
    data = np.arange(0,len(dataset.time),1, dtype='int16') # month since 1979 (Jan 1979 = 0)
    timeAxis = Axis(name='time', units='month', coord=data, atts=dict(long_name='Month since 1979-01'))
    dataset.replaceAxis(dataset.time, timeAxis, asNC=False, deepcopy=False)
    # add projection
    projection = getProjFromDict(projdict, name='{0:s} Coordinate System'.format(name))
    dataset = addGDALtoDataset(dataset, projection=projection, geotransform=None, gridfolder=grid_folder)
  else:
    # load from neatly formatted and regridded time-series files
    if folder is None: folder = avgfolder
    dataset = loadObservations(name=name, folder=folder, projection=None, resolution=None, grid=grid, 
                               period=None, varlist=varlist, varatts=varatts, filepattern=tsfile, 
                               filelist=filelist, lautoregrid=lautoregrid, mode='time-series')
  # return formatted dataset
  return dataset
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:31,代碼來源:NARR.py

示例2: loadGPCC_TS

def loadGPCC_TS(name=dataset_name, grid=None, varlist=None, resolution='25', varatts=None, filelist=None, 
                folder=None, lautoregrid=None):
  ''' Get a properly formatted dataset with the monthly GPCC time-series. '''
  if grid is None:
    # load from original time-series files 
    if folder is None: folder = orig_ts_folder
    # prepare input  
    if resolution not in ('05', '10', '25'): raise DatasetError, "Selected resolution '%s' is not available!"%resolution
    # translate varlist
    if varatts is None: varatts = tsvaratts.copy()
    if varlist is None: varlist = varatts.keys()
    if varlist and varatts: varlist = translateVarNames(varlist, varatts)
    if filelist is None: # generate default filelist
      filelist = []
      if 'p' in varlist: filelist.append(orig_ts_file.format('precip',resolution))
      if 's' in varlist: filelist.append(orig_ts_file.format('statio',resolution))
    # load dataset
    dataset = DatasetNetCDF(name=name, folder=folder, filelist=filelist, varlist=varlist, varatts=varatts, multifile=False, ncformat='NETCDF4_CLASSIC')
    # replace time axis with number of month since Jan 1979 
    data = np.arange(0,len(dataset.time),1, dtype='int16') + (1901-1979)*12 # month since 1979 (Jan 1979 = 0)
    timeAxis = Axis(name='time', units='month', coord=data, atts=dict(long_name='Month since 1979-01'))
    dataset.replaceAxis(dataset.time, timeAxis, asNC=False, deepcopy=False)
    # add GDAL info
    dataset = addGDALtoDataset(dataset, projection=None, geotransform=None)
    # N.B.: projection should be auto-detected as geographic
  else:
    # load from neatly formatted and regridded time-series files
    if folder is None: folder = avgfolder
    grid, resolution = checkGridRes(grid, resolution, period=None, lclim=False)
    dataset = loadObservations(name=name, folder=folder, projection=None, resolution=resolution, grid=grid, 
                               period=None, varlist=varlist, varatts=varatts, filepattern=tsfile, 
                               filelist=filelist, lautoregrid=lautoregrid, mode='time-series')
  # return formatted dataset
  return dataset
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:34,代碼來源:GPCC.py

示例3: loadCRU_TS

def loadCRU_TS(name=dataset_name, grid=None, varlist=None, resolution=None, varatts=None, filelist=None, 
               folder=None, lautoregrid=None):
  ''' Get a properly formatted  CRU dataset with monthly mean time-series. '''
  if grid is None:
    # load from original time-series files 
    if folder is None: folder = orig_ts_folder
    # translate varlist
    if varatts is None: varatts = tsvaratts.copy()
    if varlist is None: varlist = varatts.keys()
    if varlist and varatts: varlist = translateVarNames(varlist, varatts)
    # assemble filelist
    if filelist is None: # generate default filelist
      filelist = [orig_ts_file.format(var) for var in varlist if var not in nofile]
    # load dataset
    dataset = DatasetNetCDF(name=name, folder=folder, filelist=filelist, varlist=varlist, varatts=varatts, 
                            multifile=False, ncformat='NETCDF4_CLASSIC')
    # replace time axis with number of month since Jan 1979 
    data = np.arange(0,len(dataset.time),1, dtype='int16') + (1901-1979)*12 # month since 1979 (Jan 1979 = 0)
    timeAxis = Axis(name='time', units='month', coord=data, atts=dict(long_name='Month since 1979-01'))
    dataset.replaceAxis(dataset.time, timeAxis, asNC=False, deepcopy=False)
    # add projection  
    dataset = addGDALtoDataset(dataset, projection=None, geotransform=None, gridfolder=grid_folder)
    # N.B.: projection should be auto-detected as geographic    
  else:
    # load from neatly formatted and regridded time-series files
    if folder is None: folder = avgfolder
    dataset = loadObservations(name=name, folder=folder, projection=None, resolution=None, grid=grid, 
                               period=None, varlist=varlist, varatts=varatts, filepattern=tsfile, 
                               filelist=filelist, lautoregrid=lautoregrid, mode='time-series')
  # return formatted dataset
  return dataset
開發者ID:aerler,項目名稱:GeoPy,代碼行數:31,代碼來源:CRU.py

示例4: loadGPCC_LTM

def loadGPCC_LTM(
    name=dataset_name, varlist=None, resolution="025", varatts=ltmvaratts, filelist=None, folder=ltmfolder
):
    """ Get a properly formatted dataset the monthly accumulated GPCC precipitation climatology. """
    # prepare input
    if resolution not in ("025", "05", "10", "25"):
        raise DatasetError, "Selected resolution '%s' is not available!" % resolution
    # translate varlist
    if varlist is None:
        varlist = varatts.keys()
    if varlist and varatts:
        varlist = translateVarNames(varlist, varatts)
    # load variables separately
    if "p" in varlist:
        dataset = DatasetNetCDF(
            name=name,
            folder=folder,
            filelist=["normals_v2011_%s.nc" % resolution],
            varlist=["p"],
            varatts=varatts,
            ncformat="NETCDF4_CLASSIC",
        )
    if "s" in varlist:
        gauges = nc.Dataset(folder + "normals_gauges_v2011_%s.nc" % resolution, mode="r", format="NETCDF4_CLASSIC")
        stations = Variable(data=gauges.variables["p"][0, :, :], axes=(dataset.lat, dataset.lon), **varatts["s"])
        # consolidate dataset
        dataset.addVariable(stations, asNC=False, copy=True)
    dataset = addGDALtoDataset(dataset, projection=None, geotransform=None, gridfolder=grid_folder)
    # N.B.: projection should be auto-detected as geographic
    # return formatted dataset
    return dataset
開發者ID:aerler,項目名稱:GeoPy,代碼行數:31,代碼來源:GPCC.py

示例5: loadCFSR_TS

def loadCFSR_TS(name=dataset_name, grid=None, varlist=None, varatts=None, resolution='hires', 
                filelist=None, folder=None, lautoregrid=None):
  ''' Get a properly formatted CFSR dataset with monthly mean time-series. '''
  if grid is None:
    # load from original time-series files 
    if folder is None: folder = orig_ts_folder
    # translate varlist
    if varatts is None: varatts = tsvaratts.copy()
    if varlist is None:
      if resolution == 'hires' or resolution == '03' or resolution == '031': varlist = varlist_hires
      elif resolution == 'lowres' or resolution == '05': varlist = varlist_lowres     
    if varlist and varatts: varlist = translateVarNames(varlist, varatts)
    if filelist is None: # generate default filelist
      if resolution == 'hires' or resolution == '03' or resolution == '031': 
        files = [hiresfiles[var] for var in varlist if var in hiresfiles]
      elif resolution == 'lowres' or resolution == '05': 
        files = [lowresfiles[var] for var in varlist if var in lowresfiles]
    # load dataset
    dataset = DatasetNetCDF(name=name, folder=folder, filelist=files, varlist=varlist, varatts=varatts, 
                            check_override=['time'], multifile=False, ncformat='NETCDF4_CLASSIC')
    # load static data
    if filelist is None: # generate default filelist
      if resolution == 'hires' or resolution == '03' or resolution == '031': 
        files = [hiresstatic[var] for var in varlist if var in hiresstatic]
      elif resolution == 'lowres' or resolution == '05': 
        files = [lowresstatic[var] for var in varlist if var in lowresstatic]
      # load constants, if any (and with singleton time axis)
      if len(files) > 0:
        staticdata = DatasetNetCDF(name=name, folder=folder, filelist=files, varlist=varlist, varatts=varatts, 
                                   axes=dict(lon=dataset.lon, lat=dataset.lat), multifile=False, 
                                   check_override=['time'], ncformat='NETCDF4_CLASSIC')
        # N.B.: need to override the axes, so that the datasets are consistent
        if len(staticdata.variables) > 0:
          for var in staticdata.variables.values(): 
            if not dataset.hasVariable(var.name):
              var.squeeze() # remove time dimension
              dataset.addVariable(var, copy=False) # no need to copy... but we can't write to the netcdf file!
    # replace time axis with number of month since Jan 1979 
    data = np.arange(0,len(dataset.time),1, dtype='int16') # month since 1979 (Jan 1979 = 0)
    timeAxis = Axis(name='time', units='month', coord=data, atts=dict(long_name='Month since 1979-01'))
    dataset.replaceAxis(dataset.time, timeAxis, asNC=False, deepcopy=False)
    # add projection  
    dataset = addGDALtoDataset(dataset, projection=None, geotransform=None, gridfolder=grid_folder)
    # N.B.: projection should be auto-detected as geographic
  else:
    # load from neatly formatted and regridded time-series files
    if folder is None: folder = avgfolder
    grid, resolution = checkGridRes(grid, resolution)
    dataset = loadObservations(name=name, folder=folder, projection=None, resolution=resolution, grid=grid, 
                               period=None, varlist=varlist, varatts=varatts, filepattern=tsfile, 
                               filelist=filelist, lautoregrid=lautoregrid, mode='time-series')
  # return formatted dataset
  return dataset
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:53,代碼來源:CFSR.py

示例6: computeClimatology


#.........這裏部分代碼省略.........
        assert os.path.exists(expfolder)
        filepath = expfolder+filename
        tmpfilepath = expfolder+tmpfilename
        lskip = False # else just go ahead
        if os.path.exists(filepath): 
          if not loverwrite: 
            age = datetime.fromtimestamp(os.path.getmtime(filepath))
            # if sink file is newer than source file, skip (do not recompute)
            if age > sourceage and os.path.getsize(filepath) > 1e6: lskip = True
            # N.B.: NetCDF files smaller than 1MB are usually incomplete header fragments from a previous crash
            #print sourceage, age
          if not lskip: os.remove(filepath) 
        
        # depending on last modification time of file or overwrite setting, start computation, or skip
        if lskip:        
          # print message
          skipmsg =  "\n{:s}   >>>   Skipping: file '{:s}' in dataset '{:s}' already exists and is newer than source file.".format(pidstr,filename,dataset_name)
          skipmsg += "\n{:s}   >>>   ('{:s}')\n".format(pidstr,filepath)
          logger.info(skipmsg)              
        else:
           
          ## begin actual computation
          beginmsg = "\n{:s}   <<<   Computing '{:s}' (d{:02d}) Climatology from {:s}".format(
                      pidstr,dataset_name,domain,periodstr)
          if griddef is None: beginmsg += "  >>>   \n" 
          else: beginmsg += " ('{:s}' grid)  >>>   \n".format(griddef.name)
          logger.info(beginmsg)
  
          ## actually load datasets
          if source is None:
            source = loadWRF_TS(experiment=experiment, filetypes=[filetype], domains=domain) # comes out as a tuple... 
          if not lparallel and ldebug: logger.info('\n'+str(source)+'\n')
  
          # prepare sink
          if os.path.exists(tmpfilepath): os.remove(tmpfilepath) # remove old temp files
          sink = DatasetNetCDF(name='WRF Climatology', folder=expfolder, filelist=[tmpfilename], atts=source.atts.copy(), mode='w')
          sink.atts.period = periodstr 
          
          # initialize processing
          if griddef is None: lregrid = False
          else: lregrid = True
          CPU = CentralProcessingUnit(source, sink, varlist=varlist, tmp=lregrid, feedback=ldebug) # no need for lat/lon
          
          # start processing climatology
          if shift != 0: 
            logger.info('{0:s}   (shifting climatology by {1:d} month, to start with January)   \n'.format(pidstr,shift))
          CPU.Climatology(period=period, offset=offset, shift=shift, flush=False)
          # N.B.: immediate flushing should not be necessary for climatologies, since they are much smaller!
          
          # reproject and resample (regrid) dataset
          if lregrid:
            CPU.Regrid(griddef=griddef, flush=True)
            logger.info('%s    ---   '+str(griddef.geotansform)+'   ---   \n'%(pidstr))              
          
          # sync temporary storage with output dataset (sink)
          CPU.sync(flush=True)
          
          # add Geopotential Height Variance
          if 'GHT_Var' in sink and 'Z_var' not in sink:
            data_array = ( sink['GHT_Var'].data_array - sink['Z'].data_array**2 )**0.5
            atts = dict(name='Z_var',units='m',long_name='Square Root of Geopotential Height Variance')
            sink += Variable(axes=sink['Z'].axes, data=data_array, atts=atts)
            
          # add (relative) Vorticity Variance
          if 'Vorticity_Var' in sink and 'zeta_var' not in sink:
            data_array = ( sink['Vorticity_Var'].data_array - sink['zeta'].data_array**2 )**0.5
            atts = dict(name='zeta_var',units='1/s',long_name='Square Root of Relative Vorticity Variance')
            sink += Variable(axes=sink['zeta'].axes, data=data_array, atts=atts)
            
          # add names and length of months
          sink.axisAnnotation('name_of_month', name_of_month, 'time', 
                              atts=dict(name='name_of_month', units='', long_name='Name of the Month'))        
          if not sink.hasVariable('length_of_month'):
            sink += Variable(name='length_of_month', units='days', axes=(sink.time,), data=days_per_month,
                          atts=dict(name='length_of_month',units='days',long_name='Length of Month'))
          
          # close... and write results to file
          sink.sync()
          sink.close()
          writemsg =  "\n{:s}   >>>   Writing to file '{:s}' in dataset {:s}".format(pidstr,filename,dataset_name)
          writemsg += "\n{:s}   >>>   ('{:s}')\n".format(pidstr,filepath)
          logger.info(writemsg)      
          # rename file to proper name
          if os.path.exists(filepath): os.remove(filepath) # remove old file
          os.rename(tmpfilepath,filepath) # this will overwrite the old file
          
          # print dataset
          if not lparallel and ldebug:
            logger.info('\n'+str(sink)+'\n')
          
          # clean up (not sure if this is necessary, but there seems to be a memory leak...   
          del sink, CPU; gc.collect() # get rid of these guys immediately
          
    # clean up and return
    if source is not None: source.unload(); del source
    # N.B.: source is only loaded once for all periods    

  # N.B.: garbage is collected in multi-processing wrapper as well
  # return
  return 0 # so far, there is no measure of success, hence, if there is no crash...
開發者ID:EdwardBetts,項目名稱:GeoPy,代碼行數:101,代碼來源:wrfavg.py

示例7: loadObservations

def loadObservations(name=None, folder=None, period=None, grid=None, station=None, shape=None, lencl=False, 
                     varlist=None, varatts=None, filepattern=None, filelist=None, resolution=None, 
                     projection=None, geotransform=None, axes=None, lautoregrid=None, mode='climatology'):
  ''' A function to load standardized observational datasets. '''
  # prepare input
  if mode.lower() == 'climatology': # post-processed climatology files
    # transform period
    if period is None or period == '':
      if name not in ('PCIC','PRISM','GPCC','NARR'): 
        raise ValueError("A period is required to load observational climatologies.")
    elif isinstance(period,basestring):
      period = tuple([int(prd) for prd in period.split('-')]) 
    elif not isinstance(period,(int,np.integer)) and ( not isinstance(period,tuple) and len(period) == 2 ): 
      raise TypeError(period)
  elif mode.lower() in ('time-series','timeseries'): # concatenated time-series files
    period = None # to indicate time-series (but for safety, the input must be more explicit)
    if lautoregrid is None: lautoregrid = False # this can take very long!
  # cast/copy varlist
  if isinstance(varlist,basestring): varlist = [varlist] # cast as list
  elif varlist is not None: varlist = list(varlist) # make copy to avoid interference
  # figure out station and shape options
  if station and shape: raise ArgumentError()
  elif station or shape: 
    if grid is not None: raise NotImplementedError('Currently observational station data can only be loaded from the native grid.')
    if lautoregrid: raise GDALError('Station data can not be regridded, since it is not map data.')
    lstation = bool(station); lshape = bool(shape)
    grid = station if lstation else shape
    # add station/shape parameters
    if varlist:
      params = stn_params if lstation else shp_params
      for param in params:
        if param not in varlist: varlist.append(param)    
  else:
    lstation = False; lshape = False
  # varlist (varlist = None means all variables)
  if varatts is None: varatts = default_varatts.copy()
  if varlist is not None: varlist = translateVarNames(varlist, varatts)
  # filelist
  if filelist is None: 
    filename = getFileName(name=name, resolution=resolution, period=period, grid=grid, filepattern=filepattern)
    # check existance
    filepath = '{:s}/{:s}'.format(folder,filename)
    if not os.path.exists(filepath):
      nativename = getFileName(name=name, resolution=resolution, period=period, grid=None, filepattern=filepattern)
      nativepath = '{:s}/{:s}'.format(folder,nativename)
      if os.path.exists(nativepath):
        if lautoregrid: 
          from processing.regrid import performRegridding # causes circular reference if imported earlier
          griddef = loadPickledGridDef(grid=grid, res=None, folder=grid_folder)
          dataargs = dict(period=period, resolution=resolution)
          performRegridding(name, 'climatology',griddef, dataargs) # default kwargs
        else: raise IOError("The dataset '{:s}' for the selected grid ('{:s}') is not available - use the regrid module to generate it.".format(filename,grid) )
      else: raise IOError("The dataset file '{:s}' does not exits!\n('{:s}')".format(filename,filepath))
  # load dataset
  dataset = DatasetNetCDF(name=name, folder=folder, filelist=[filename], varlist=varlist, varatts=varatts, 
                          axes=axes, multifile=False, ncformat='NETCDF4')
  # mask all shapes that are incomplete in dataset
  if shape and lencl and 'shp_encl' in dataset: 
    dataset.load() # need to load data before masking; is cheap for shape averages, anyway
    dataset.mask(mask='shp_encl', invert=True, skiplist=shp_params)
  # correct ordinal number of shape (should start at 1, not 0)
  if lshape:
    if dataset.hasAxis('shapes'): raise AxisError("Axis 'shapes' should be renamed to 'shape'!")
    if not dataset.hasAxis('shape'): 
      raise AxisError()
    if dataset.shape.coord[0] == 0: dataset.shape.coord += 1
# figure out grid
  if not lstation and not lshape:
    if grid is None or grid == name:
      dataset = addGDALtoDataset(dataset, projection=projection, geotransform=geotransform, gridfolder=grid_folder)
    elif isinstance(grid,basestring): # load from pickle file
  #     griddef = loadPickledGridDef(grid=grid, res=None, filename=None, folder=grid_folder)
      # add GDAL functionality to dataset 
      dataset = addGDALtoDataset(dataset, griddef=grid, gridfolder=grid_folder)
    else: raise TypeError(dataset)
    # N.B.: projection should be auto-detected, if geographic (lat/lon)
  return dataset
開發者ID:aerler,項目名稱:GeoPy,代碼行數:77,代碼來源:common.py

示例8: print

      # load source
      periodstr = 'Climatology' if period is None else '{0:4d}-{1:4d}'.format(*period)
      print('\n\n   ***   Processing Resolution %s from %s   ***   \n\n'%(res,periodstr))
      if period is None: source = loadGPCC_LTM(varlist=None,resolution=res) # ['stations','precip']
      else: source = loadGPCC_TS(varlist=None,resolution=res)
      source = source(time=timeSlice(period))
      #source.load()
      print(source)
      print('\n')
            
      # prepare sink
      gridstr = res if grid == 'GPCC' else grid
      filename = getFileName(grid=gridstr, period=period, name='GPCC', filepattern=avgfile)
      if os.path.exists(avgfolder+filename): os.remove(avgfolder+filename)
      atts =dict(period=periodstr, name='GPCC', title='GPCC Climatology') 
      sink = DatasetNetCDF(name='GPCC Climatology', folder=avgfolder, filelist=[filename], atts=source.atts, mode='w')
#       sink = addGDALtoDataset(sink, griddef=source.griddef)
      
      # initialize processing
      CPU = CentralProcessingUnit(source, sink, tmp=True)

      if period is not None:
        # determine averaging interval
        offset = source.time.getIndex(period[0]-1979)/12 # origin of monthly time-series is at January 1979 
        # start processing climatology
        CPU.Climatology(period=period[1]-period[0], offset=offset, flush=False)
#         CPU.sync(flush=True)

      # get NARR coordinates
      if grid is not 'GPCC':
        griddef = loadPickledGridDef(grid=grid, res=None, folder=grid_folder)
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:31,代碼來源:GPCC.py

示例9: performExtraction

def performExtraction(dataset, mode, stnfct, dataargs, loverwrite=False, varlist=None, lwrite=True, lreturn=False,
                      ldebug=False, lparallel=False, pidstr='', logger=None):
  ''' worker function to extract point data from gridded dataset '''  
  # input checking
  if not isinstance(dataset,basestring): raise TypeError
  if not isinstance(dataargs,dict): raise TypeError # all dataset arguments are kwargs 
  if not callable(stnfct): raise TypeError # function to load station dataset
  if lparallel: 
    if not lwrite: raise IOError, 'In parallel mode we can only write to disk (i.e. lwrite = True).'
    if lreturn: raise IOError, 'Can not return datasets in parallel mode (i.e. lreturn = False).'
  
  # logging
  if logger is None: # make new logger     
    logger = logging.getLogger() # new logger
    logger.addHandler(logging.StreamHandler())
  else:
    if isinstance(logger,basestring): 
      logger = logging.getLogger(name=logger) # connect to existing one
    elif not isinstance(logger,logging.Logger): 
      raise TypeError, 'Expected logger ID/handle in logger KW; got {}'.format(str(logger))

  lclim = False; lts = False
  if mode == 'climatology': lclim = True
  elif mode == 'time-series': lts = True
  else: raise NotImplementedError, "Unrecognized Mode: '{:s}'".format(mode)
  
  ## extract meta data from arguments
  module, dataargs, loadfct, filepath, datamsgstr = getMetaData(dataset, mode, dataargs)
  dataset_name = dataargs.dataset_name; periodstr = dataargs.periodstr; avgfolder = dataargs.avgfolder

  # load template dataset
  stndata = stnfct() # load station dataset from function
  if not isinstance(stndata, Dataset): raise TypeError
  # N.B.: the loading function is necessary, because DataseNetCDF instances do not pickle well 
            
  # determine age of source file
  if not loverwrite: sourceage = datetime.fromtimestamp(os.path.getmtime(filepath))    
          
  # get filename for target dataset and do some checks
  filename = getTargetFile(stndata.name, dataset, mode, module, dataargs, lwrite)
  if ldebug: filename = 'test_' + filename
  if not os.path.exists(avgfolder): raise IOError, "Dataset folder '{:s}' does not exist!".format(avgfolder)
  lskip = False # else just go ahead
  if lwrite:
    if lreturn: 
      tmpfilename = filename # no temporary file if dataset is passed on (can't rename the file while it is open!)
    else: 
      if lparallel: tmppfx = 'tmp_exstns_{:s}_'.format(pidstr[1:-1])
      else: tmppfx = 'tmp_exstns_'.format(pidstr[1:-1])
      tmpfilename = tmppfx + filename      
    filepath = avgfolder + filename
    tmpfilepath = avgfolder + tmpfilename
    if os.path.exists(filepath): 
      if not loverwrite: 
        age = datetime.fromtimestamp(os.path.getmtime(filepath))
        # if source file is newer than sink file or if sink file is a stub, recompute, otherwise skip
        if age > sourceage and os.path.getsize(filepath) > 1e5: lskip = True
        # N.B.: NetCDF files smaller than 100kB are usually incomplete header fragments from a previous crashed
      if not lskip: os.remove(filepath) # recompute
  
  # depending on last modification time of file or overwrite setting, start computation, or skip
  if lskip:        
    # print message
    skipmsg =  "\n{:s}   >>>   Skipping: file '{:s}' in dataset '{:s}' already exists and is newer than source file.".format(pidstr,filename,dataset_name)
    skipmsg += "\n{:s}   >>>   ('{:s}')\n".format(pidstr,filepath)
    logger.info(skipmsg)              
  else:
          
    ## actually load datasets
    source = loadfct() # load source 
    # check period
    if 'period' in source.atts and dataargs.periodstr != source.atts.period: # a NetCDF attribute
      raise DateError, "Specifed period is inconsistent with netcdf records: '{:s}' != '{:s}'".format(periodstr,source.atts.period)
  
    # print message
    if lclim: opmsgstr = "Extracting '{:s}'-type Point Data from Climatology ({:s})".format(stndata.name, periodstr)
    elif lts: opmsgstr = "Extracting '{:s}'-type Point Data from Time-series".format(stndata.name)
    else: raise NotImplementedError, "Unrecognized Mode: '{:s}'".format(mode)
    # print feedback to logger
    logger.info('\n{0:s}   ***   {1:^65s}   ***   \n{0:s}   ***   {2:^65s}   ***   \n'.format(pidstr,datamsgstr,opmsgstr))
    if not lparallel and ldebug: logger.info('\n'+str(source)+'\n')  
    
    ## create new sink/target file
    # set attributes   
    atts=source.atts.copy()
    atts['period'] = dataargs.periodstr if dataargs.periodstr else 'time-series' 
    atts['name'] = dataset_name; atts['station'] = stndata.name
    atts['title'] = '{:s} (Stations) from {:s} {:s}'.format(stndata.title,dataset_name,mode.title())
    # make new dataset
    if lwrite: # write to NetCDF file 
      if os.path.exists(tmpfilepath): os.remove(tmpfilepath) # remove old temp files 
      sink = DatasetNetCDF(folder=avgfolder, filelist=[tmpfilename], atts=atts, mode='w')
    else: sink = Dataset(atts=atts) # ony create dataset in memory
    
    # initialize processing
    CPU = CentralProcessingUnit(source, sink, varlist=varlist, tmp=False, feedback=ldebug)
  
    # extract data at station locations
    CPU.Extract(template=stndata, flush=True)
    # get results    
#.........這裏部分代碼省略.........
開發者ID:EdwardBetts,項目名稱:GeoPy,代碼行數:101,代碼來源:exstns.py

示例10: print

  # generate averaged climatology
  elif mode == 'average_timeseries':
    
    # load source
    periodstr = '%4i-%4i'%period
    print('\n')
    print('   ***   Processing Grid %s from %s   ***   '%(grid,periodstr))
    print('\n')
    source = loadNARR_TS()
    print(source)
    print('\n')
    # prepare sink
    gridstr = '' if grid is 'NARR' else '_'+grid
    filename = avgfile.format(gridstr,'_'+periodstr)
    if os.path.exists(avgfolder+filename): os.remove(avgfolder+filename)
    sink = DatasetNetCDF(name='NARR Climatology', folder=avgfolder, filelist=[filename], atts=source.atts, mode='w')
    sink.atts.period = periodstr 
    
    # determine averaging interval
    offset = source.time.getIndex(period[0]-1979)/12 # origin of monthly time-series is at January 1979 
    # initialize processing
#     CPU = CentralProcessingUnit(source, sink, varlist=['precip', 'T2'], tmp=True) # no need for lat/lon
    CPU = CentralProcessingUnit(source, sink, varlist=None, tmp=True) # no need for lat/lon
    
    # start processing climatology
    CPU.Climatology(period=period[1]-period[0], offset=offset, flush=False)
    
    # sync temporary storage with output
    CPU.sync(flush=True)

#     # make new masks
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:31,代碼來源:NARR.py

示例11: print

                  
    elif mode == 'average_timeseries':   
      
      # load source
      periodstr = '{0:4d}-{1:4d}'.format(*period)
      print('\n')
      print('   ***   Processing Resolution %s from %s   ***   '%(res,periodstr))
      print('\n')
      source = loadCFSR_TS(resolution=res)
      print(source)
      print('\n')
      # prepare sink
      filename = avgfile.format('_'+res,'_'+periodstr)
      if os.path.exists(avgfolder+filename): os.remove(avgfolder+filename)
      sink = DatasetNetCDF(name='CFSR Climatology', folder=avgfolder, filelist=[filename], atts=source.atts, mode='w')
      sink.atts.period = periodstr 
      
      # determine averaging interval
      offset = source.time.getIndex(period[0]-1979)/12 # origin of monthly time-series is at January 1979 
      # initialize processing
      CPU = CentralProcessingUnit(source, sink, tmp=True)
      
      # start processing climatology
      CPU.Climatology(period=period[1]-period[0], offset=offset, flush=False)
      
      # shift longitude axis by 180 degrees left (i.e. 0 - 360 -> -180 - 180)
      CPU.Shift(lon=-180, flush=False)
      
      # sync temporary storage with output (sink variable; do not flush!)
      CPU.sync(flush=False)
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:29,代碼來源:CFSR.py

示例12: print

      
    # load source
    periodstr = '%4i-%4i'%period
    print('\n')
    print('   ***   Processing Time-series from %s   ***   '%(periodstr,))
    print('\n')
    source = loadCRU_TS()
    source = source(time=timeSlice(period)) # only get relevant time-slice    
    print(source)
    assert period[0] != 1979 or source.time.coord[0] == 0
    assert len(source.time) == (period[1]-period[0])*12
    print('\n')
    # prepare sink
    filename = avgfile.format('','_'+periodstr,)
    if os.path.exists(avgfolder+filename): os.remove(avgfolder+filename)
    sink = DatasetNetCDF(name='CRU Climatology', folder=avgfolder, filelist=[filename], atts=source.atts, mode='w')
    sink.atts.period = periodstr 
    
    # determine averaging interval
    offset = source.time.getIndex(period[0]-1979)/12 # origin of monthly time-series is at January 1979 
    # initialize processing
#     CPU = CentralProcessingUnit(source, sink, varlist=['wetfrq'])
    CPU = CentralProcessingUnit(source, sink)
    # start processing      
    print('')
    print('   +++   processing   +++   ') 
    CPU.Climatology(period=period[1]-period[0], offset=offset, flush=False)
    # sync temporary storage with output
    CPU.sync(flush=False)   
    print('\n')
開發者ID:aerler,項目名稱:GeoPy,代碼行數:29,代碼來源:CRU.py

示例13: __init__


#.........這裏部分代碼省略.........
    varlist = list(varlist) 
    if 'SST' in varlist: # special handling of name SST variable, as it is part of Ts
      varlist.remove('SST')
      if not 'Ts' in varlist: varlist.append('Ts')
      lSST = True # Ts is renamed to SST below
    if translateVars is None: varlist = list(varlist) + translateVarNames(varlist, atts) # also aff translations, just in case
    elif translateVars is True: varlist = translateVarNames(varlist, atts) 
    # N.B.: DatasetNetCDF does never apply translation!
  # NetCDF file mode
  ncmode = 'rw' if lwrite else 'r'   
  # get grid or station-set name
  if lstation:
    # the station name can be inserted as the grid name
    gridstr = '_'+station.lower(); # only use lower case for filenames
    griddef = None
  elif lshape:
    # the station name can be inserted as the grid name
    gridstr = '_'+shape.lower(); # only use lower case for filenames
    griddef = None
  else:
    if grid is None or grid == experiment.grid: 
      gridstr = ''; griddef = None
    else: 
      gridstr = '_'+grid.lower() # only use lower case for filenames
      griddef = loadPickledGridDef(grid=grid, res=None, filename=None, folder=grid_folder, check=True)
  # insert grid name and period
  filenames = []
  for filetype,fileformat in zip(typelist,filelist):
    if lclim: filename = fileformat.format(gridstr,periodstr) # put together specfic filename for climatology
    elif lts: filename = fileformat.format(gridstr) # or for time-series
    elif lcvdp: filename = fileformat.format(experiment.name if experiment else name,periodstr) # not implemented: gridstr
    elif ldiag: raise NotImplementedError
    else: raise DatasetError
    filenames.append(filename) # append to list (passed to DatasetNetCDF later)
    # check existance
    filepath = '{:s}/{:s}'.format(folder,filename)
    if not os.path.exists(filepath):
      nativename = fileformat.format('',periodstr) # original filename (before regridding)
      nativepath = '{:s}/{:s}'.format(folder,nativename)
      if os.path.exists(nativepath):
        if lautoregrid: 
          from processing.regrid import performRegridding # causes circular reference if imported earlier
          griddef = loadPickledGridDef(grid=grid, res=None, folder=grid_folder)
          dataargs = dict(experiment=experiment, filetypes=[filetype], period=period)
          print("The '{:s}' (CESM) dataset for the grid ('{:s}') is not available:\n Attempting regridding on-the-fly.".format(name,filename,grid))
          if performRegridding('CESM','climatology' if lclim else 'time-series', griddef, dataargs): # default kwargs
            raise IOError, "Automatic regridding failed!"
          print("Output: '{:s}'".format(name,filename,grid,filepath))            
        else: raise IOError, "The '{:s}' (CESM) dataset '{:s}' for the selected grid ('{:s}') is not available - use the regrid module to generate it.".format(name,filename,grid) 
      else: raise IOError, "The '{:s}' (CESM) dataset file '{:s}' does not exits!\n({:s})".format(name,filename,folder)
   
  # load dataset
  #print varlist, filenames
  if experiment: title = experiment.title
  else: title = name
  dataset = DatasetNetCDF(name=name, folder=folder, filelist=filenames, varlist=varlist, axes=None, 
                          varatts=atts, title=title, multifile=False, ignore_list=ignore_list, 
                          ncformat='NETCDF4', squeeze=True, mode=ncmode, check_vars=check_vars)
  # replace time axis
  if lreplaceTime:
    if lts or lcvdp:
      # check time axis and center at 1979-01 (zero-based)
      if experiment is None: ys = period[0]; ms = 1
      else: ys,ms,ds = [int(t) for t in experiment.begindate.split('-')]; assert ds == 1
      if dataset.hasAxis('time'):
        ts = (ys-1979)*12 + (ms-1); te = ts+len(dataset.time) # month since 1979 (Jan 1979 = 0)
開發者ID:xiefengy,項目名稱:GeoPy,代碼行數:67,代碼來源:CMIP5.py


注:本文中的geodata.netcdf.DatasetNetCDF類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。