當前位置: 首頁>>代碼示例>>Python>>正文


Python function.Function類代碼示例

本文整理匯總了Python中function.Function的典型用法代碼示例。如果您正苦於以下問題:Python Function類的具體用法?Python Function怎麽用?Python Function使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Function類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: grow

    def grow(self, depth=None):
        """ Grows a random child node by 1, limited by `depth` (if provided)
            and arity restrictions.  Returns the new node (or None if no
            node can be expanded).

        Args:
            depth: int (default=None)

        Returns:
            Node instance (or None)
        """
        # Creates a random permutation of child nodes
        nodes_depths = list(self.descendants_and_self_with_depths())
        shuffle(nodes_depths)

        for node, d in nodes_depths:
            if len(node.children) >= node.func.arity:
                continue

            if d >= depth:
                continue

            if d == depth - 1:
                func = Function.random_terminal()
            else:
                func = Function.random_function()
            child = Node(func)
            node.add_child(child)
            return child

        # If no children can be expanded, return None
        return None
開發者ID:mlberkeley,項目名稱:genetic-algs,代碼行數:32,代碼來源:node.py

示例2: test_cubic_derivative

 def test_cubic_derivative(self):
     a = cubic_derivative_approximation(
         Function.power(Function.identity(), Function.constant(3)),
         4, 10)
     self.assertAlmostEqual(a(0), 0)
     self.assertAlmostEqual(a(2), 8)
     self.assertAlmostEqual(a(5), 125)
     self.assertAlmostEqual(a(12), 1728)
     self.assertAlmostEqual(a(-3), -27)
開發者ID:bjthinks,項目名稱:grapher,代碼行數:9,代碼來源:approximate.py

示例3: __init__

    def __init__(self, cursor, comment):
        Function.__init__(self, cursor, comment)

        self.static = cursor.is_static_method()
        self.virtual = cursor.is_virtual_method()

        self.abstract = True
        self._override = None

        self.update_abstract(cursor)
開發者ID:mpercy,項目名稱:cldoc,代碼行數:10,代碼來源:method.py

示例4: mutate_float

    def mutate_float(node, score_tree, eps=1e-1):
        """ Takes a Node object and optimizes floats greedily.
            Returns a new tree.

            Args:
                node: Node object to operate on
                score_tree: function that takes a tree
                    and returns a fitness (as float)
                eps: learning rate (as float) (default=1e-1)

            Returns:
                Node object
        """
        # Copy the tree
        new_tree = node.deepcopy()

        # Find all floating leaves
        floats = new_tree.all_floats()
        if floats == []:
            return None

        has_changed = False

        for f in floats:
            value = f.func.func()
            left_value = value - eps
            right_value = value + eps

            func = f.func
            left_func = Function.make_float_function(left_value)
            left_func = Function(left_func, 0, str(left_value))
            right_func = Function.make_float_function(right_value)
            right_func = Function(right_func, 0, str(right_value))

            score = score_tree(new_tree)
            f.func = left_func
            left_score = score_tree(new_tree)
            f.func = right_func
            right_score = score_tree(new_tree)

            max_ = max(left_score, score, right_score)
            if abs(max_ - left_score) < 1e-10:
                f.func = left_func
                has_changed = True
            elif abs(max_ - right_score) < 1e-10:
                f.func = right_func
                has_changed = True
            else:
                f.func = func

        if not has_changed:
            return None

        return new_tree
開發者ID:mlberkeley,項目名稱:genetic-algs,代碼行數:54,代碼來源:mutations.py

示例5: recursively_generate_cubics

def recursively_generate_cubics(f, left, right, depth = 5):
    for a in approximate(f, left, right):
        if is_bounded(Function.sum(f, Function.product(
                    Function.constant(-1), a)), Interval(left, right),
                      Interval(-.008, .008)):
            return [a]
    if depth == 0:
        return []
    middle = (left + right) / 2
    return recursively_generate_cubics(f, left, middle, depth-1) + \
        recursively_generate_cubics(f, middle, right, depth-1)
開發者ID:bjthinks,項目名稱:grapher,代碼行數:11,代碼來源:main.py

示例6: test_depth

 def test_depth(self):
     f = Function.sum(Function.power(Function.identity(),
                                     Function.constant(2)),
                      Function.identity())
     # This requires splitting in half
     self.assertTrue(is_bounded(f, Interval(-1,0), Interval(-3/4,1/2), 1))
     self.assertEqual(is_bounded(f, Interval(-1,0), Interval(-3/4,1/2), 0),
                      None)
     # This requires 3 levels of recursion
     self.assertTrue(is_bounded(f, Interval(-1,0), Interval(-3/8,1/8), 3))
     self.assertEqual(is_bounded(f, Interval(-1,0), Interval(-3/8,1/8), 2),
                      None)
     # This requires 8 levels of recursion
     self.assertTrue(is_bounded(f, Interval(-1,0), Interval(-65/256,1/256),
                                8))
     self.assertEqual(is_bounded(f, Interval(-1,0), Interval(-65/256,1/256),
                                 7), None)
開發者ID:bjthinks,項目名稱:grapher,代碼行數:17,代碼來源:slice.py

示例7: __init__

	def __init__(self, pt_left_bot, pt_right_top, win):
		self.function = Function("0")
		self.p1 = pt_left_bot
		self.p2 = pt_right_top
		self.graph_area = Rectangle(self.p1, self.p2)
		self.win = win
		self.accuracy = 0.1
		self.objects_drawn = []
開發者ID:feda12,項目名稱:Function-Drawer,代碼行數:8,代碼來源:graphwidget.py

示例8: main

def main():
	Maths.generateMathExpressions()
	print("Available operators:")
	for o in Maths.Expressions:
		print(Maths.Expressions[o].getAbbreviation())

	print("-------------------------")
	f = Function("cos(3*x)+6/4*(x+3)", False)
	print("RPN String", f.getRpnString())
	for x in range (2, 11):
		f.compute(x)

	print("-------------------------")

	f = Function("56*((6+2)/(8-x)*2^3", False)
	print("RPN String", f.getRpnString()) #should give 56 6 2 + 8 7 - / 2 3 ^ * *


	mainwindow = MainWindow("Function Drawer", 992, 512)
	fx = f.computeRange(0, 10)
	max_y = max(fx.values())
	min_y = min(fx.values())

	print(min_y, max_y)
	mainwindow.setCoords(-1, min_y, 11, max_y)
	for x in range(0, 11):
		print(fx[x])
		p = Point(x, fx[x])
		p.draw(mainwindow)

	input("Press a key to quit")
開發者ID:feda12,項目名稱:Function-Drawer,代碼行數:31,代碼來源:main.py

示例9: test_approx

    def test_approx(self):
        f = Function.identity()
        for a in approximate(f, 0, 1):
            self.assertTrue(isinstance(a, Function))
            self.assertTrue(isinstance(a, CubicSpline))
            # We may someday generate approximations that don't go through
            # the endpoints, and remove these tests.  Until then, they
            # help verify that the approximation formulas are correct.
            self.assertEqual(a(0.0), 0.0)
            self.assertEqual(a(1.0), 1.0)

        # (-x^2 - 1) ^ .5
        bad = Function.power(Function.sum(Function.product(
                Function.constant(-1),
                Function.power(Function.identity(), Function.constant(2))),
                                          Function.constant(-1)),
                             Function.constant(.5))
        self.assertEqual(list(approximate(bad, 0, 1)), [])
開發者ID:bjthinks,項目名稱:grapher,代碼行數:18,代碼來源:approximate.py

示例10: create_full_tree

    def create_full_tree(depth):
        """ Creates a tree using the full method with depth `depth`.
            Returns the root node.

        Args:
            depth: int

        Returns:
            Node instance
        """
        if depth == 0:
            # Generate a leaf node
            terminal = Function.random_terminal()
            node = Node(terminal)
            return node
        else:
            # Generate an intermediate node
            func = Function.random_function()
            node = Node(func)

            for _ in range(func.arity):
                node.add_child(TreeMethods.create_full_tree(depth - 1))
            return node
開發者ID:mlberkeley,項目名稱:genetic-algs,代碼行數:23,代碼來源:tree_methods.py

示例11: __init__

    def __init__(self, t0, t1, f0, c0, c1, f1):
        self.__t0 = t0
        self.__t1 = t1
        self.__f0 = f0
        self.__c0 = c0
        self.__c1 = c1
        self.__f1 = f1

        # The specific functional form will have consequences for the
        # efficiency of interval arithmetic (and thus, slicing).

        # t' = (t-t0)/(t1-t0)
        t = Function.product(Function.sum(Function.identity(), Function.constant(-t0)),
                             Function.constant(1.0/(t1-t0)))

        omt = Function.sum(Function.constant(1), Function.product(Function.constant(-1), t))
        def term(const, f):
            return Function.sum(Function.constant(const), Function.product(t, f))
        a = -f0 + 3*c0 - 3*c1 + f1
        b = 3*f0 - 6*c0 + 3*c1
        c = -3*f0 + 3*c0
        d = f0

        WrappedFunction.__init__(self, term(d, term(c, term(b, Function.constant(a)))).weak_simplify())
開發者ID:bjthinks,項目名稱:grapher,代碼行數:24,代碼來源:cubicspline.py

示例12: test_simple

 def test_simple(self):
     self.assertTrue(is_bounded(Function.identity(), Interval(0,1),
                                Interval(0,1)))
     self.assertFalse(is_bounded(Function.identity(), Interval(0,2),
                                 Interval(0,1)))
     self.assertFalse(is_bounded(Function.identity(), Interval(-1,1),
                                 Interval(0,1)))
     self.assertFalse(is_bounded(Function.identity(), Interval(-1,2),
                                 Interval(0,1)))
     self.assertTrue(is_bounded(Function.constant(0.), Interval(3,4),
                                Interval(0,1)))
     self.assertFalse(is_bounded(Function.constant(2.), Interval(3,4),
                                 Interval(0,1)))
開發者ID:bjthinks,項目名稱:grapher,代碼行數:13,代碼來源:slice.py

示例13: create_grow_tree

    def create_grow_tree(depth):
        """ Creates a tree using the grow method with depth `depth`. Note
        that since grow ends when all leaf nodes are 0-arity, it is
        possible that the tree generated by this method has a depth
        less than `depth`.

        Args:
            depth: int

        Returns:
            Node instance
        """
        func = Function.random_function()
        root = Node(func)

        while True:
            if root.grow(depth) is None:
                break

        return root
開發者ID:mlberkeley,項目名稱:genetic-algs,代碼行數:20,代碼來源:tree_methods.py

示例14: initialize_traj

    def initialize_traj(self, mode):
        # see comment at top of ll_prob.py for mode options
        if self.trust_region_cnt is not None:
            self.model.remove(self.trust_region_cnt)
        self.clean(self.trust_temp)

        for constraint in self.constraints:
            constraint.clean()

        obj = grb.QuadExpr()
        for var in self.vars:
            if var.get_val() is not None and var.recently_sampled:
                obj += 1e5 * self.l2_norm_diff_squared(self.model, var)
            elif var.get_val() is not None and var.is_resampled:
                obj += 1 * self.l2_norm_diff_squared(self.model, var)
        if mode == "straight":
            obj += grb.quicksum(self.obj_quad)
        elif mode == "l2":
            for var in self.vars:
                if var.get_val() is not None:
                    obj += self.l2_norm_diff_squared(self.model, var)
        elif mode == "minvel":
            for var in self.vars:
                if var.hl_param.is_traj:
                    K = var.hl_param.num_dofs()
                    T = var.hl_param.num_timesteps()
                    KT = K * T
                    v = -1 * np.ones((KT - K, 1))
                    d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                    # [:,0] allows numpy to see v and d as one-dimensional so
                    # that numpy will create a diagonal matrix with v and d as a diagonal
                    P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                    # minimum-velocity finite difference
                    Q = np.dot(np.transpose(P), P)
                    obj += Function.quad_expr((var.get_grb_vars(self) - var.get_val()).flatten(order="f"), Q)
        else:
            raise NotImplementedError

        return self.optimize(objective=obj)
開發者ID:c-l,項目名稱:planopt,代碼行數:39,代碼來源:opt_prob.py

示例15: solve

def solve(n_cells, degree=3, with_plot=False):
    # Problem
    w = 3 * np.pi
    x = Symbol("x")
    u = sin(w * x)
    f = -u.diff(x, 2)

    # As Expr
    u = Expression(u)
    f = Expression(f)

    # Space
    # element = HermiteElement(degree)
    poly_set = leg.basis_functions(degree)
    dof_set = chebyshev_points(degree)
    element = LagrangeElement(poly_set, dof_set)

    mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells)
    V = FunctionSpace(mesh, element)
    bc = DirichletBC(V, u)

    # Need mass matrix to intefrate the rhs
    M = assemble_matrix(V, "mass", get_geom_tensor=None, timer=0)
    # NOTE We cannot you apply the alpha transform idea because the functions
    # are mapped with this selective weight on 2nd, 3rd functions. So some rows
    # of alpha would have to be multiplied by weights which are cell specific.
    # And then on top of this there would be a dx = J*dy term. Better just to
    # use the qudrature representations
    # Mpoly_matrix = leg.mass_matrix(degree)
    # M_ = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0)

    # Stiffness matrix for Laplacian
    A = assemble_matrix(V, "stiffness", get_geom_tensor=None, timer=0)
    # NOTE the above
    # Apoly_matrix = leg.stiffness_matrix(degree)
    # A_ = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0)

    # Interpolant of source
    fV = V.interpolate(f)
    # Integrate in L2 to get the vector
    b = M.dot(fV.vector)

    # Apply boundary conditions
    bc.apply(A, b, True)
    x = spsolve(A, b)

    # As function
    uh = Function(V, x)

    # This is a (slow) way of plotting the high order
    if with_plot:
        fig = plt.figure()
        ax = fig.gca()
        uV = V.interpolate(u)

        for cell in Cells(mesh):
            a, b = cell.vertices[0, 0], cell.vertices[1, 0]
            x = np.linspace(a, b, 100)

            y = uh.eval_cell(x, cell)
            ax.plot(x, y, color=random.choice(["b", "g", "m", "c"]))

            y = uV.eval_cell(x, cell)
            ax.plot(x, y, color="r")

            y = u.eval_cell(x, cell)
            ax.plot(x, y, color="k")

        plt.show()

    # Error norm in CG high order
    fine_degree = degree + 3
    poly_set = leg.basis_functions(fine_degree)
    dof_set = chebyshev_points(fine_degree)
    element = LagrangeElement(poly_set, dof_set)

    V_fine = FunctionSpace(mesh, element)
    # Interpolate exact solution to fine
    u_fine = V_fine.interpolate(u)
    # Interpolate approx solution fine
    uh_fine = V_fine.interpolate(uh)

    # Difference vector
    e = u_fine.vector - uh_fine.vector

    # L2
    if False:
        Apoly_matrix = leg.mass_matrix(fine_degree)
        get_geom_tensor = lambda cell: 1.0 / cell.Jac

    # Need matrix for integration of H10 norm
    else:
        Apoly_matrix = leg.stiffness_matrix(fine_degree)
        get_geom_tensor = lambda cell: cell.Jac

    A_fine = assemble_matrix(V_fine, Apoly_matrix, get_geom_tensor, timer=0)

    # Integrate the error
    e = sqrt(np.sum(e * A_fine.dot(e)))
    # Mesh size
#.........這裏部分代碼省略.........
開發者ID:MiroK,項目名稱:fem-dofs,代碼行數:101,代碼來源:hermite_poisson.py


注:本文中的function.Function類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。