本文整理匯總了Python中enthought.chaco.api.HPlotContainer.request_redraw方法的典型用法代碼示例。如果您正苦於以下問題:Python HPlotContainer.request_redraw方法的具體用法?Python HPlotContainer.request_redraw怎麽用?Python HPlotContainer.request_redraw使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類enthought.chaco.api.HPlotContainer
的用法示例。
在下文中一共展示了HPlotContainer.request_redraw方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: PlotUI
# 需要導入模塊: from enthought.chaco.api import HPlotContainer [as 別名]
# 或者: from enthought.chaco.api.HPlotContainer import request_redraw [as 別名]
#.........這裏部分代碼省略.........
self.pd.set_data("line_index2", array([]))
self.pd.set_data("line_value2", array([]))
self.pd.set_data("scatter_index2", array([]))
self.pd.set_data("scatter_value2", array([]))
self.pd.set_data("scatter_color2", array([]))
self.cross_plot2 = Plot(self.pd, width = 140, orientation="v", resizable="v", padding=20, padding_bottom=160)
self.cross_plot2.plot(("line_index2", "line_value2"),
line_style="dot")
self.cross_plot2.plot(("scatter_index2","scatter_value2","scatter_color2"),
type="cmap_scatter",
name="dot",
color_mapper=self._cmap(image_value_range),
marker="circle",
marker_size=8)
self.cross_plot2.index_range = self.polyplot.index_range.y_range
# Create a container and add components
self.container = HPlotContainer(padding=40, fill_padding=True,
bgcolor = "white", use_backbuffer=False)
inner_cont = VPlotContainer(padding=0, use_backbuffer=True)
inner_cont.add(self.cross_plot)
inner_cont.add(contour_container)
self.container.add(self.colorbar)
self.container.add(inner_cont)
self.container.add(self.cross_plot2)
def update(self, model):
self.minz = model.minz
self.maxz = model.maxz
self.colorbar.index_mapper.range.low = self.minz
self.colorbar.index_mapper.range.high = self.maxz
self._image_index.set_data(model.xs, model.ys)
self._image_value.data = model.zs
self.pd.set_data("line_index", model.xs)
self.pd.set_data("line_index2", model.ys)
self.container.invalidate_draw()
self.container.request_redraw()
#---------------------------------------------------------------------------
# Event handlers
#---------------------------------------------------------------------------
def _metadata_changed(self, old, new):
""" This function takes out a cross section from the image data, based
on the line inspector selections, and updates the line and scatter
plots."""
self.cross_plot.value_range.low = self.minz
self.cross_plot.value_range.high = self.maxz
self.cross_plot2.value_range.low = self.minz
self.cross_plot2.value_range.high = self.maxz
if self._image_index.metadata.has_key("selections"):
x_ndx, y_ndx = self._image_index.metadata["selections"]
if y_ndx and x_ndx:
self.pd.set_data("line_value",
self._image_value.data[y_ndx,:])
self.pd.set_data("line_value2",
self._image_value.data[:,x_ndx])
xdata, ydata = self._image_index.get_data()
xdata, ydata = xdata.get_data(), ydata.get_data()
self.pd.set_data("scatter_index", array([xdata[x_ndx]]))
self.pd.set_data("scatter_index2", array([ydata[y_ndx]]))
self.pd.set_data("scatter_value",
array([self._image_value.data[y_ndx, x_ndx]]))
self.pd.set_data("scatter_value2",
array([self._image_value.data[y_ndx, x_ndx]]))
self.pd.set_data("scatter_color",
array([self._image_value.data[y_ndx, x_ndx]]))
self.pd.set_data("scatter_color2",
array([self._image_value.data[y_ndx, x_ndx]]))
else:
self.pd.set_data("scatter_value", array([]))
self.pd.set_data("scatter_value2", array([]))
self.pd.set_data("line_value", array([]))
self.pd.set_data("line_value2", array([]))
def _colormap_changed(self):
self._cmap = color_map_name_dict[self.colormap]
if hasattr(self, "polyplot"):
value_range = self.polyplot.color_mapper.range
self.polyplot.color_mapper = self._cmap(value_range)
value_range = self.cross_plot.color_mapper.range
self.cross_plot.color_mapper = self._cmap(value_range)
# FIXME: change when we decide how best to update plots using
# the shared colormap in plot object
self.cross_plot.plots["dot"][0].color_mapper = self._cmap(value_range)
self.cross_plot2.plots["dot"][0].color_mapper = self._cmap(value_range)
self.container.request_redraw()
def _num_levels_changed(self):
if self.num_levels > 3:
self.polyplot.levels = self.num_levels
self.lineplot.levels = self.num_levels
示例2: TemplatePicker
# 需要導入模塊: from enthought.chaco.api import HPlotContainer [as 別名]
# 或者: from enthought.chaco.api.HPlotContainer import request_redraw [as 別名]
#.........這裏部分代碼省略.........
@on_trait_change('left, top, tmp_size')
def update_tmp_plot(self):
self.tmp_plotdata.set_data("imagedata",
self.sig.data[self.top:self.top+self.tmp_size,self.left:self.left+self.tmp_size,self.img_idx])
grid_data_source = self.tmp_plot.range2d.sources[0]
grid_data_source.set_data(np.arange(self.tmp_size), np.arange(self.tmp_size))
self.tmp_img_idx=self.img_idx
return
@on_trait_change('left, top, tmp_size')
def update_CC(self):
if self.ShowCC:
self.CC = cv_funcs.xcorr(self.sig.data[self.top:self.top+self.tmp_size,
self.left:self.left+self.tmp_size,self.tmp_img_idx],
self.sig.data[:,:,self.img_idx])
self.img_plotdata.set_data("imagedata",self.CC)
grid_data_source = self.img_plot.range2d.sources[0]
grid_data_source.set_data(np.arange(self.CC.shape[1]),
np.arange(self.CC.shape[0]))
if self.numpeaks_total>0:
self.peaks=[np.array([[0,0,-1]])]
@on_trait_change('cbar_selection:selection')
def update_thresh(self):
try:
thresh=self.cbar_selection.selection
self.thresh=thresh
self.cmap_renderer.color_data.metadata['selections']=thresh
self.thresh_lower=thresh[0]
self.thresh_upper=thresh[1]
#cmap_renderer.color_data.metadata['selection_masks']=self.thresh
self.cmap_renderer.color_data.metadata_changed={'selections':thresh}
self.container.request_redraw()
self.img_container.request_redraw()
except:
pass
@on_trait_change('thresh_upper,thresh_lower')
def manual_thresh_update(self):
self.thresh=[self.thresh_lower,self.thresh_upper]
self.cmap_renderer.color_data.metadata['selections']=self.thresh
self.cmap_renderer.color_data.metadata_changed={'selections':self.thresh}
self.container.request_redraw()
self.img_container.request_redraw()
@on_trait_change('peaks,cbar_selection:selection,img_idx')
def calc_numpeaks(self):
try:
thresh=self.cbar_selection.selection
self.thresh=thresh
except:
thresh=[]
if thresh==[] or thresh==() or thresh==None:
thresh=(0,1)
self.numpeaks_total=int(np.sum([np.sum(np.ma.masked_inside(self.peaks[i][:,2],thresh[0],thresh[1]).mask) for i in xrange(len(self.peaks))]))
try:
self.numpeaks_img=int(np.sum(np.ma.masked_inside(self.peaks[self.img_idx][:,2],thresh[0],thresh[1]).mask))
except:
self.numpeaks_img=0
@on_trait_change('findpeaks')
def locate_peaks(self):
from hyperspy import peak_char as pc
peaks=[]
for idx in xrange(self.numfiles):