當前位置: 首頁>>代碼示例>>Python>>正文


Python api.HPlotContainer類代碼示例

本文整理匯總了Python中enthought.chaco.api.HPlotContainer的典型用法代碼示例。如果您正苦於以下問題:Python HPlotContainer類的具體用法?Python HPlotContainer怎麽用?Python HPlotContainer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了HPlotContainer類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_plot_component

def _create_plot_component():
    numpoints = 100
    low = -5
    high = 15.0
    x = arange(low, high, (high - low) / numpoints)

    container = HPlotContainer(resizable="hv", bgcolor="lightgray", fill_padding=True, padding=10)
    # container = VPlotContainer(resizable = "hv", bgcolor="lightgray",
    #                            fill_padding=True, padding = 10)

    # Plot some bessel functions
    value_range = None
    for i in range(10):
        y = jn(i, x)
        plot = create_line_plot((x, y), color=tuple(COLOR_PALETTE[i]), width=2.0, orientation="v")
        # orientation="h")
        plot.origin_axis_visible = True
        plot.origin = "top left"
        plot.padding_left = 10
        plot.padding_right = 10
        plot.border_visible = True
        plot.bgcolor = "white"
        if value_range is None:
            value_range = plot.value_mapper.range
        else:
            plot.value_range = value_range
            value_range.add(plot.value)
        if i % 2 == 1:
            plot.line_style = "dash"
        container.add(plot)

    container.padding_top = 50
    container.overlays.append(PlotLabel("More Bessels", component=container, font="swiss 16", overlay_position="top"))

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:35,代碼來源:vertical_plot.py

示例2: draw

    def draw( self ):
        """Draw data."""
        if len(self.fitResults) == 0:
            return

        #if not hasattr( self, 'subplot1' ):
        #    self.subplot1 = self.figure.add_subplot( 211 )
        #    self.subplot2 = self.figure.add_subplot( 212 )

        a, ed = numpy.histogram(self.fitResults['tIndex'], self.Size[0]/2)

        #self.subplot1.cla()
        #self.subplot1.plot(ed[:-1], a, color='b' )
        #self.subplot1.set_xticks([0, ed.max()])
        #self.subplot1.set_yticks([0, a.max()])
        #self.subplot2.cla()
        #self.subplot2.plot(ed[:-1], numpy.cumsum(a), color='g' )
        #self.subplot2.set_xticks([0, ed.max()])
        #self.subplot2.set_yticks([0, a.sum()])

        plot1 = create_line_plot(ed[:,-1], a, color = 'blue', bgcolor="white",
                                add_grid=True, add_axis=True)

        plot2 = create_line_plot(ed[:,-1], numpy.cumsum(a), color = 'green', bgcolor="white",
                                add_grid=True, add_axis=True)
        container = HPlotContainer(spacing=20, padding=50, bgcolor="lightgray")
        container.add(plot1)
        container.add(plot2)
        return container
開發者ID:RuralCat,項目名稱:CLipPYME,代碼行數:29,代碼來源:progGraphC.py

示例3: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 40)
    pd = ArrayPlotData(index = x, y0=jn(0,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="render_style = hold", padding=50, border_visible=True,
                 overlay_border = True)
    plot1.legend.visible = True
    lineplot = plot1.plot(("index", "y0"), name="j_0", color="red", render_style="hold")

    # Attach some tools to the plot
    attach_tools(plot1)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="render_style = connectedhold",
                 padding=50, border_visible=True, overlay_border=True)
    plot2.plot(('index', 'y0'), color="blue", render_style="connectedhold")
    attach_tools(plot2)

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)
    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:27,代碼來源:line_plot_hold.py

示例4: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="Line Plot", padding=50, border_visible=True)
    plot1.legend.visible = True
    plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plot1.plot(("index", "y3"), name="j_3", color="blue")

    # Attach some tools to the plot
    plot1.tools.append(PanTool(plot1))
    zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
    plot1.overlays.append(zoom)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="Scatter plot", padding=50,
                 border_visible=True)
    plot2.plot(('index', 'y3'), type="scatter", color="blue", marker="circle")

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:31,代碼來源:line_plot1.py

示例5: _create_plot_component

def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    spec_renderer = obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")[0]
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    values = [zeros(NUM_SAMPLES/2) for i in xrange(SPECTROGRAM_LENGTH)]
    p = WaterfallRenderer(index = spec_renderer.index, values = values,
            index_mapper = LinearMapper(range = obj.spectrum_plot.index_mapper.range),
            value_mapper = LinearMapper(range = DataRange1D(low=0, high=SPECTROGRAM_LENGTH)),
            y2_mapper = LinearMapper(low_pos=0, high_pos=8,
                            range=DataRange1D(low=0, high=15)),
            )
    spectrogram_plot = p
    obj.spectrogram_plot = p
    dummy = Plot()
    dummy.padding = 50
    dummy.index_axis.mapper.range = p.index_mapper.range
    dummy.index_axis.title = "Frequency (hz)"
    dummy.add(p)

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)

    c2 = VPlotContainer()
    c2.add(dummy)
    c2.add(container)

    return c2
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:59,代碼來源:spec_waterfall.py

示例6: get_plot

    def get_plot(self):
        pixel_sizes = self.data_source.voxel_sizes
        shape = self.data.shape
        m = min(pixel_sizes)
        s = [int(d*sz/m) for d, sz in zip(shape, pixel_sizes)]
        if 1: # else physical aspect ratio is enabled
            ss = max(s)/4
            s = [max(s,ss) for s in s]
        plot_sizes = dict (xy = (s[2], s[1]), xz = (s[2], s[0]), zy = (s[0],s[1]), zz=(s[0],s[0]))

        plots = GridContainer(shape=(2,2), spacing=(3, 3), padding = 50, aspect_ratio=1)
        pxy = Plot(self.plotdata, padding=1, fixed_preferred_size = plot_sizes['xy'],
                   x_axis=PlotAxis (orientation='top'),
                   )
        pxz = Plot(self.plotdata, padding=1, fixed_preferred_size = plot_sizes['xz'],
                   )
        pzy = Plot(self.plotdata, padding=1, fixed_preferred_size = plot_sizes['zy'],
                   #orientation = 'v',  # cannot use 'v' because of img_plot assumes row-major ordering
                   x_axis=PlotAxis(orientation='top'), 
                   y_axis=PlotAxis(orientation='right'),
                   )
        pzz = Plot(self.plotdata, padding=1, fixed_preferred_size = plot_sizes['zz'])

        plots.add(pxy, pzy, pxz, pzz)

        self.plots =  dict(xy = pxy.img_plot('xy', colormap=bone)[0],
                           xz = pxz.img_plot('xz', colormap=bone)[0],
                           zy = pzy.img_plot('zy', colormap=bone)[0],
                           zz = pzz.img_plot('zz')[0],
                           xyp = pxy.plot(('z_x', 'z_y'), type='scatter', color='orange', marker='circle', marker_size=3, 
                                          selection_marker_size = 3, selection_marker='circle')[0],
                           xzp = pxz.plot(('y_x', 'y_z'), type='scatter', color='orange', marker='circle', marker_size=3,
                                          selection_marker_size = 3, selection_marker='circle')[0],
                           zyp = pzy.plot(('x_z', 'x_y'), type='scatter', color='orange', marker='circle', marker_size=3,
                                          selection_marker_size = 3, selection_marker='circle')[0],
                           )

        for p in ['xy', 'xz', 'zy']:
            self.plots[p].overlays.append(ZoomTool(self.plots[p]))
            self.plots[p].tools.append(PanTool(self.plots[p], drag_button='right'))

            imgtool = ImageInspectorTool(self.plots[p])
            self.plots[p].tools.append(imgtool)
            overlay = ImageInspectorOverlay(component=self.plots[p],
                                            bgcolor = 'white',
                                            image_inspector=imgtool)
            self.plots['zz'].overlays.append(overlay)

            self.plots[p+'p'].tools.append (ScatterInspector(self.plots[p+'p'], selection_mode = 'toggle'))

        self.plots['xyp'].index.on_trait_change (self._xyp_metadata_handler, 'metadata_changed')
        self.plots['xzp'].index.on_trait_change (self._xzp_metadata_handler, 'metadata_changed')
        self.plots['zyp'].index.on_trait_change (self._zyp_metadata_handler, 'metadata_changed')

        plot = HPlotContainer()
        # todo: add colormaps
        plot.add(plots)
        return plot
開發者ID:pearu,項目名稱:iocbio,代碼行數:58,代碼來源:image_stack_viewer.py

示例7: _createWindow

    def _createWindow(self):

        container = HPlotContainer(resizable = "hv", bgcolor="lightgray",
        #container = Container(resizable = "hv", bgcolor="lightgray",
                                   fill_padding=True, padding = 10)
        container.add(self._createConfigurationPane())
        container.add(self._createResultsPane())
        #container.add(self._create_plot_component())
        return container
開發者ID:NeuroArchive,項目名稱:morphforge,代碼行數:9,代碼來源:testMike.py

示例8: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    plot_area = OverlayPlotContainer(border_visible=True)
    container = HPlotContainer(padding=50, bgcolor="transparent")
    #container.spacing = 15

    x = linspace(-2.0, 10.0, 100)
    for i in range(5):
        color = tuple(COLOR_PALETTE[i])
        y = jn(i, x)
        renderer = create_line_plot((x, y), color=color)
        plot_area.add(renderer)
        #plot_area.padding_left = 20

        axis = PlotAxis(orientation="left", resizable="v",
                    mapper = renderer.y_mapper,
                    axis_line_color=color,
                    tick_color=color,
                    tick_label_color=color,
                    title_color=color,
                    bgcolor="transparent",
                    title = "jn_%d" % i,
                    border_visible = True,)
        axis.bounds = [60,0]
        axis.padding_left = 10
        axis.padding_right = 10

        container.add(axis)

        if i == 4:
            # Use the last plot's X mapper to create an X axis and a
            # vertical grid
            x_axis = PlotAxis(orientation="bottom", component=renderer,
                        mapper=renderer.x_mapper)
            renderer.overlays.append(x_axis)
            grid = PlotGrid(mapper=renderer.x_mapper, orientation="vertical",
                    line_color="lightgray", line_style="dot")
            renderer.underlays.append(grid)

    # Add the plot_area to the horizontal container
    container.add(plot_area)

    # Attach some tools to the plot
    broadcaster = BroadcasterTool()
    for plot in plot_area.components:
        broadcaster.tools.append(PanTool(plot))

    # Attach the broadcaster to one of the plots.  The choice of which
    # plot doesn't really matter, as long as one of them has a reference
    # to the tool and will hand events to it.
    plot.tools.append(broadcaster)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:54,代碼來源:stacked_axis.py

示例9: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot = Plot(pd, title="Line Plot", padding=50, border_visible=True)
    plot.legend.visible = True
    plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto")
    plot.plot(("index", "y3"), name="j_3", color="auto")

    plot.x_grid.line_color = "black"
    plot.y_grid.line_color = "black"
    xmin, xmax = 1.0, 6.0
    ymin, ymax = 0.2, 0.80001
    plot.x_grid.set(data_min = xmin, data_max = xmax,
            transverse_bounds = (ymin, ymax),
            transverse_mapper = plot.y_mapper)

    plot.y_grid.set(data_min = ymin, data_max = ymax,
            transverse_bounds = (xmin, xmax),
            transverse_mapper = plot.x_mapper)

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # A second plot whose vertical grid lines are clipped to the jn(3) function
    def my_bounds_func(ticks):
        """ Returns y_low and y_high for each grid tick in the array **ticks** """
        tmp = array([zeros(len(ticks)),jn(3, ticks)]).T
        return tmp

    func_plot = Plot(pd, padding=50, border_visible=True)
    func_plot.plot(("index", "y3"), color="red")
    func_plot.x_grid.set(transverse_bounds = my_bounds_func,
                    transverse_mapper = func_plot.y_mapper,
                    line_color="black")
    func_plot.tools.append(PanTool(func_plot))

    container = HPlotContainer()
    container.add(plot)
    container.add(func_plot)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:49,代碼來源:bounded_grids.py

示例10: test_valign

 def test_valign(self):
     container = HPlotContainer(bounds=[300,200], valign="center")
     comp1 = StaticPlotComponent([200,100])
     container.add(comp1)
     container.do_layout()
     self.failUnlessEqual(comp1.position, [0,50])
     container.valign="top"
     container.do_layout(force=True)
     self.failUnlessEqual(comp1.position, [0,100])
     return
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:10,代碼來源:plotcontainer_test_case.py

示例11: _create_plot_component

def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, MAX_FREQ, num=MAX_FREQN)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(MAX_FREQN)
    obj.spectrum_data.set_data("amplitude", empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum", color="red")
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 150.0  # spectrum amplitude maximum
    obj.spectrum_plot.index_axis.title = "Frequency (hz)"
    obj.spectrum_plot.value_axis.title = "Amplitude"

    # Time Series plot
    times = linspace(0.0, float(TIME_NUM_SAMPLES) / SAMPLING_RATE, num=TIME_NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(TIME_NUM_SAMPLES)
    obj.time_data.set_data("amplitude", empty_amplitude)
    obj.time_data.set_data("amplitude_1", empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue", alpha=0.5)
    obj.time_plot.plot(("time", "amplitude_1"), name="Time", color="red", alpha=0.5)

    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = "Time (seconds)"
    obj.time_plot.value_axis.title = "Amplitude"
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -1
    time_range.high = 1

    # Spectrogram plot
    spectrogram_data = zeros((MAX_FREQN, SPECTROGRAM_LENGTH))
    obj.spectrogram_plotdata = ArrayPlotData()
    obj.spectrogram_plotdata.set_data("imagedata", spectrogram_data)
    spectrogram_plot = Plot(obj.spectrogram_plotdata)
    max_time = float(SPECTROGRAM_LENGTH * NUM_SAMPLES) / SAMPLING_RATE
    # max_freq = float(SAMPLING_RATE / 2)
    max_freq = float(MAX_FREQ)
    spectrogram_plot.img_plot(
        "imagedata", name="Spectrogram", xbounds=(0, max_time), ybounds=(0, max_freq), colormap=jet
    )
    range_obj = spectrogram_plot.plots["Spectrogram"][0].value_mapper.range
    range_obj.high = 2  # brightness of specgram
    range_obj.low = 0.0
    range_obj.edit_traits()
    spectrogram_plot.title = "Spectrogram"
    obj.spectrogram_plot = spectrogram_plot

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)
    container.add(spectrogram_plot)

    return container
開發者ID:abelay,項目名稱:iapradar,代碼行數:60,代碼來源:spectrum.py

示例12: _create_plot_component

def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    spectrogram_data = zeros(( NUM_SAMPLES/2, SPECTROGRAM_LENGTH))
    obj.spectrogram_plotdata = ArrayPlotData()
    obj.spectrogram_plotdata.set_data('imagedata', spectrogram_data)
    spectrogram_plot = Plot(obj.spectrogram_plotdata)
    max_time = float(SPECTROGRAM_LENGTH * NUM_SAMPLES) / SAMPLING_RATE
    max_freq = float(SAMPLING_RATE / 2)
    spectrogram_plot.img_plot('imagedata',
                              name='Spectrogram',
                              xbounds=(0, max_time),
                              ybounds=(0, max_freq),
                              colormap=jet,
                              )
    range_obj = spectrogram_plot.plots['Spectrogram'][0].value_mapper.range
    range_obj.high = 5
    range_obj.low = 0.0
    spectrogram_plot.title = 'Spectrogram'
    obj.spectrogram_plot = spectrogram_plot

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)
    container.add(spectrogram_plot)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:59,代碼來源:spectrum.py

示例13: __init__

    def __init__(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x = x, y = y)
        # Create the scatter plot
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")
        # Create the line plot
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")
        # Create a horizontal container and put the two plots inside it
        container = HPlotContainer(scatter, line)
        container.spacing = 0
        scatter.padding_right = 0
        line.padding_left = 0
        line.y_axis.orientation = "right"

        self.plot = container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:19,代碼來源:container_nospace.py

示例14: _create_plot_component

def _create_plot_component():

    # Create the index
    numpoints = 100
    low = -5
    high = 15.0
    x = arange(low, high, (high-low)/numpoints)
    plotdata = ArrayPlotData(x=x, y1=jn(0,x), y2=jn(1,x))

    # Create the left plot
    left_plot = Plot(plotdata)
    left_plot.x_axis.title = "X"
    left_plot.y_axis.title = "j0(x)"
    renderer = left_plot.plot(("x", "y1"), type="line", color="blue",
                              width=2.0)[0]
    renderer.overlays.append(LineInspector(renderer, axis='value',
                                            write_metadata=True,
                                            is_listener=True))
    renderer.overlays.append(LineInspector(renderer, axis="index",
                                            write_metadata=True,
                                            is_listener=True))
    left_plot.overlays.append(ZoomTool(left_plot, tool_mode="range"))
    left_plot.tools.append(PanTool(left_plot))

    # Create the right plot
    right_plot = Plot(plotdata)
    right_plot.index_range = left_plot.index_range
    right_plot.orientation = "v"
    right_plot.x_axis.title = "j1(x)"
    right_plot.y_axis.title = "X"
    renderer2 = right_plot.plot(("x","y2"), type="line", color="red", width=2.0)[0]
    renderer2.index = renderer.index
    renderer2.overlays.append(LineInspector(renderer2, write_metadata=True, is_listener=True))
    renderer2.overlays.append(LineInspector(renderer2, axis="value", is_listener=True))
    right_plot.overlays.append(ZoomTool(right_plot, tool_mode="range"))
    right_plot.tools.append(PanTool(right_plot))

    container = HPlotContainer(background="lightgray")
    container.add(left_plot)
    container.add(right_plot)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:42,代碼來源:two_plots.py

示例15: _create_window

    def _create_window(self):

        # Create some x-y data series to plot
        x = linspace(-2.0, 10.0, 100)
        pd = ArrayPlotData(index = x)
        for i in range(5):
            pd.set_data("y" + str(i), jn(i,x))

        # Create some line plots of some of the data
        plot1 = Plot(pd, title="Line Plot", padding=50, border_visible=True, 
                     overlay_border=True)
        plot1.legend.visible = True
        plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
        plot1.plot(("index", "y3"), name="j_3", color="blue")

        # Create a container and add our plots
        container = HPlotContainer()
        container.add(plot1)

        # Return a window containing our plots
        return Window(self, -1, component=container)
開發者ID:axelvonderheide,項目名稱:scratch,代碼行數:21,代碼來源:rv4.py


注:本文中的enthought.chaco.api.HPlotContainer類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。